These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 32294789)
1. Isoliquiritigenin Nanosuspension Enhances Cytostatic Effects in A549 Lung Cancer Cells. Qiao F; Zhao Y; Mai Y; Guo J; Dong L; Zhang W; Yang J Planta Med; 2020 May; 86(8):538-547. PubMed ID: 32294789 [TBL] [Abstract][Full Text] [Related]
2. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Patel PJ; Gajera BY; Dave RH Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778 [TBL] [Abstract][Full Text] [Related]
3. Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A Design of Experiment approach. Karakucuk A; Celebi N; Teksin ZS Eur J Pharm Sci; 2016 Dec; 95():111-121. PubMed ID: 27181836 [TBL] [Abstract][Full Text] [Related]
4. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Hong C; Dang Y; Lin G; Yao Y; Li G; Ji G; Shen H; Xie Y Int J Pharm; 2014 Dec; 477(1-2):251-60. PubMed ID: 25445518 [TBL] [Abstract][Full Text] [Related]
5. Nanosuspensions Containing Oridonin/HP-β-Cyclodextrin Inclusion Complexes for Oral Bioavailability Enhancement via Improved Dissolution and Permeability. Zhang X; Zhang T; Lan Y; Wu B; Shi Z AAPS PharmSciTech; 2016 Apr; 17(2):400-8. PubMed ID: 26187778 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box-Behnken Design. Kassem MAA; ElMeshad AN; Fares AR AAPS PharmSciTech; 2017 May; 18(4):983-996. PubMed ID: 27506564 [TBL] [Abstract][Full Text] [Related]
7. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Sawant KK; Patel MH; Patel K Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349 [TBL] [Abstract][Full Text] [Related]
8. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Freag MS; Elnaggar YS; Abdallah OY Int J Pharm; 2013 Sep; 454(1):462-71. PubMed ID: 23830765 [TBL] [Abstract][Full Text] [Related]
9. Formation, physical stability and in vitro antimalarial activity of dihydroartemisinin nanosuspensions obtained by co-grinding method. Chingunpitak J; Puttipipatkhachorn S; Chavalitshewinkoon-Petmitr P; Tozuka Y; Moribe K; Yamamoto K Drug Dev Ind Pharm; 2008 Mar; 34(3):314-22. PubMed ID: 18363147 [TBL] [Abstract][Full Text] [Related]
10. Formulation and Evaluation of Naringenin Nanosuspensions for Bioavailability Enhancement. Gera S; Talluri S; Rangaraj N; Sampathi S AAPS PharmSciTech; 2017 Nov; 18(8):3151-3162. PubMed ID: 28534300 [TBL] [Abstract][Full Text] [Related]
11. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Oktay AN; Karakucuk A; Ilbasmis-Tamer S; Celebi N Eur J Pharm Sci; 2018 Sep; 122():254-263. PubMed ID: 29981401 [TBL] [Abstract][Full Text] [Related]
12. Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach. Mohapatra PK; Srivastava R; Varshney KK; Babu SH Anticancer Agents Med Chem; 2022; 22(10):1984-2001. PubMed ID: 34353274 [TBL] [Abstract][Full Text] [Related]
13. Study of Formulation and Process Variables for Optimization of Piroxicam Nanosuspension Using 3 Alhamhoom Y; Honmane SM; Hani U; Osmani RAM; Kandasamy G; Vasudevan R; Paramshetti S; R Dudhal R; K Kengar N; Charde MS Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771784 [TBL] [Abstract][Full Text] [Related]
14. Enhancing Betulinic Acid Dissolution Rate and Improving Antitumor Activity via Nanosuspension Constructed by Anti-Solvent Technique. Li S; Zhang J; Fang Y; Yi J; Lu Z; Chen Y; Guo B Drug Des Devel Ther; 2020; 14():243-256. PubMed ID: 32021108 [TBL] [Abstract][Full Text] [Related]
15. Development of a chemically stable 10-hydroxycamptothecin nanosuspensions. Pu X; Sun J; Wang Y; Wang Y; Liu X; Zhang P; Tang X; Pan W; Han J; He Z Int J Pharm; 2009 Sep; 379(1):167-73. PubMed ID: 19505545 [TBL] [Abstract][Full Text] [Related]
16. A stable hydrocortisone nanosuspension for improved dissolution: Preparation, characterization and in vitro evaluation. Ali HS; Khan S; York P; Shah SM; Khan J; Hussain Z; Khan BA Pak J Pharm Sci; 2017 Sep; 30(5):1635-1643. PubMed ID: 29084684 [TBL] [Abstract][Full Text] [Related]
17. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension. Ahuja BK; Jena SK; Paidi SK; Bagri S; Suresh S Int J Pharm; 2015 Jan; 478(2):540-52. PubMed ID: 25490182 [TBL] [Abstract][Full Text] [Related]
18. Investigation of Formulation and Process Parameters of Wet Media Milling to Develop Etodolac Nanosuspensions. Karakucuk A; Celebi N Pharm Res; 2020 May; 37(6):111. PubMed ID: 32476048 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro α-glucosidase inhibition. Rahim H; Sadiq A; Khan S; Amin F; Ullah R; Shahat AA; Mahmood HM Int J Nanomedicine; 2019; 14():6287-6296. PubMed ID: 31496686 [TBL] [Abstract][Full Text] [Related]
20. Development and comparison of intramuscularly long-acting paliperidone palmitate nanosuspensions with different particle size. Leng D; Chen H; Li G; Guo M; Zhu Z; Xu L; Wang Y Int J Pharm; 2014 Sep; 472(1-2):380-5. PubMed ID: 24882037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]