BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32295017)

  • 1. Analysis of the Connecting Effectiveness of the Interphase Zone on the Tensile Properties of Carbon Nanotubes (CNT) Reinforced Nanocomposite.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32295017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model Progress for Tensile Power of Polymer Nanocomposites Reinforced with Carbon Nanotubes by Percolating Interphase Zone and Network Aspects.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32370278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases.
    Zare Y; Rhee KY
    J Colloid Interface Sci; 2017 Nov; 506():283-290. PubMed ID: 28738279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Expanded Takayanagi Model for Tensile Modulus of Carbon Nanotubes Reinforced Nanocomposites Assuming Interphase Regions Surrounding the Dispersed and Networked Nanoparticles.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of the Electrical Conductivity of Polymer Nanocomposites Assuming the Interphase Layer Surrounding Carbon Nanotubes.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32053949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of Percolation Threshold, Tunneling Distance, and Conductivity for Carbon Nanotube (CNT)-Reinforced Nanocomposites Assuming Effective CNT Concentration.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of storage modulus in solid-like poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming the contributions of nanoparticles and interphase regions in the networks.
    Zhou Z; Sarafbidabad M; Zare Y; Rhee KY
    J Mech Behav Biomed Mater; 2018 Oct; 86():368-374. PubMed ID: 30015208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the tensile modulus of polymer carbon nanotube nanocomposites containing filler networks and interphase regions by development of the Kolarik model.
    Chen S; Sarafbidabad M; Zare Y; Rhee KY
    RSC Adv; 2018 Jun; 8(42):23825-23834. PubMed ID: 35540261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Effects of the Interphase Region on the Network Properties in Polymer Carbon Nanotube Nanocomposites.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 32284499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites.
    Zare Y; Rhee KY
    RSC Adv; 2019 Dec; 10(1):424-433. PubMed ID: 35492511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple model for constant storage modulus of poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites at low frequencies assuming the properties of interphase regions and networks.
    Zare Y; Rhim S; Garmabi H; Rhee KY
    J Mech Behav Biomed Mater; 2018 Apr; 80():164-170. PubMed ID: 29427932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of critical interfacial shear strength between a polymer matrix and carbon nanotubes on the interphase strength and Pukanszky's "
    Zare Y; Rhee KY
    RSC Adv; 2020 Apr; 10(23):13573-13582. PubMed ID: 35492982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology.
    Zare Y
    J Colloid Interface Sci; 2016 Mar; 465():342-6. PubMed ID: 26704592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of Z Parameter for Tensile Strength of Multi-Layered Interphase in Polymer Nanocomposites to Material and Interphase Properties.
    Zare Y; Rhee KY
    Nanoscale Res Lett; 2017 Dec; 12(1):42. PubMed ID: 28097595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes.
    Dul S; Pegoretti A; Fambri L
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30158474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a model for modulus of polymer halloysite nanotube nanocomposites by the interphase zones around dispersed and networked nanotubes.
    Zare Y; Rhee KY
    Sci Rep; 2022 Feb; 12(1):2443. PubMed ID: 35165379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling approach for tensile strength of interphase layers in polymer nanocomposites.
    Zare Y
    J Colloid Interface Sci; 2016 Jun; 471():89-93. PubMed ID: 26990956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensile Modulus of Polymer Halloysite Nanotube Systems Containing Filler-Interphase Networks for Biomedical Requests.
    Zare Y; Rhee KY; Park SJ
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of Kolarik model for tensile strength of polymer particulate nanocomposites as a function of matrix, nanoparticles and interphase properties.
    Zare Y; Rhee KY
    J Colloid Interface Sci; 2017 Nov; 506():582-588. PubMed ID: 28759858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular dynamics investigation for predicting the effect of various parameters on the mechanical properties of carbon nanotube-reinforced aluminum nanocomposites.
    Patel PR; Sharma S; Tiwari SK
    J Mol Model; 2020 Aug; 26(9):238. PubMed ID: 32813056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.