BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32295028)

  • 1. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking Recognition in Mobile Devices.
    Casado FE; Rodríguez G; Iglesias R; Regueiro CV; Barro S; Canedo-Rodríguez A
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand.
    Ebner M; Fetzer T; Bullmann M; Deinzer F; Grzegorzek M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR; Sarwar MU; Khan S; Iwendi C; Mittal M; Kumar N
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data.
    Ahmed Bhuiyan R; Ahmed N; Amiruzzaman M; Islam MR
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
    Fahim M; Lee S; Yoon Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3666-9. PubMed ID: 25570786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor Fusion for Recognition of Activities of Daily Living.
    Wu J; Feng Y; Sun P
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring transportation mode from smartphone sensors: Evaluating the potential of Wi-Fi and Bluetooth.
    Bjerre-Nielsen A; Minor K; Sapieżyński P; Lehmann S; Lassen DD
    PLoS One; 2020; 15(7):e0234003. PubMed ID: 32614842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of smartphone-based gait measurements for quantification of physical activity/inactivity levels.
    Ebara T; Azuma R; Shoji N; Matsukawa T; Yamada Y; Akiyama T; Kurihara T; Yamada S
    J Occup Health; 2017 Nov; 59(6):506-512. PubMed ID: 28835575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of smartphone motion sensors for physical activity recognition.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2014 Jun; 14(6):10146-76. PubMed ID: 24919015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.