BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32295133)

  • 1. The Preparation of High-Purity Iron (99.987%) Employing a Process of Direct Reduction-Melting Separation-Slag Refining.
    Li B; Sun G; Li S; Guo H; Guo J
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32295133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slag Formation during Reduction of Iron Oxide Using Hydrogen Plasma Smelting Reduction.
    Naseri Seftejani M; Schenk J; Spreitzer D; Andreas Zarl M
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment Characteristics of Cr in Chromium Slag after Pre-Reduction and Melting/Magnetic Separation Treatment.
    Hu S; Wang D; Li X; Zhao W; Qu T; Wang Y
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosity and Structure of a CaO-SiO
    Shen Y; Chong J; Huang Z; Tian J; Zhang W; Tang X; Ding W; Du X
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31408933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion Separation of Vanadium-Titanium Magnetite and Enrichment Test of Ti Element in Slag.
    Yang S; Liu S; Guo S; Zhang T; Li J
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technological research of process for producing titanium rich slag and complex titanium-containing ferroalloy.
    Vorobkalo N; Baisanov A; Makhambetov Y; Mynzhasar Y; Nurgali N
    Heliyon; 2023 Aug; 9(8):e18989. PubMed ID: 37600357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct reduction of copper slag-carbon composite pellets by coal and biochar.
    Zuo Z; Yu Q; Xie H; Yang F; Han Z; Qin Q
    Environ Technol; 2020 Jul; 41(17):2240-2252. PubMed ID: 30582415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of carbonized rice husk for producing high purity silicon by the combination of electric arc smelting and slag refining.
    Kong J; Gao S; Liu Y; Jin X; Wei D; Jiang S; Ye K; Wang J; Xing P; Luo X
    J Hazard Mater; 2019 Dec; 380():120827. PubMed ID: 31302358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.
    Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L
    J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralogical characterisation and magnetic separation of vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv W; Pei G; Lv X; Liu S
    Waste Manag Res; 2018 Nov; 36(11):1083-1091. PubMed ID: 30198425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Refining Slag Based on Structural Modifications Associated with the Boron Removal for SoG-Si.
    Qian G; Sun Y; Wang D; Wu Z; Wang Z; Ma W
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Preparation Parameters and Basic Properties of Premelted Calcium Aluminate Slag Prepared from Secondary Aluminum Dross.
    Hu S; Wang D; Hou D; Zhao W; Li X; Qu T; Zhu Q
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics Evaluation and Verification of High-Sulfur Copper Slag Composite Agglomerate in Oxidation-Roasting-Separation-Leaching Process.
    Zhao K; Zhang X; Zhao W; Guo H; Zhang Q; Zhen C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations on the Interaction Behavior between Direct Reduced Iron and Various Melts.
    Pfeiffer A; Wimmer G; Schenk J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of heavy metals from iron bath-melting separation process applied to municipal solid waste incineration fly ash.
    Wei CM; Liu QC; Wen J
    Environ Technol; 2009 Dec; 30(14):1503-9. PubMed ID: 20183994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the production efficiency of high-titania slag in Ti extraction process: fluxing effect on formation of pseudobrookite.
    Kim DH; Heo JH; Park HS; Kim JK; Park JH
    Sci Rep; 2020 Apr; 10(1):6530. PubMed ID: 32300163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.
    Li B; Wang X; Wang H; Wei Y; Hu J
    Sci Rep; 2017 May; 7(1):2406. PubMed ID: 28546556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Research on Vortex Melting Reduction of High-Iron Red Mud (Bauxite Residue).
    Li X; Zhang TA; Wang K; Lv G; Chao X; Yang X
    Bull Environ Contam Toxicol; 2022 Jul; 109(1):155-162. PubMed ID: 35338371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient separation of silica and alumina in simulated CFB slag by reduction roasting-alkaline leaching process.
    Li X; Wang H; Zhou Q; Qi T; Liu G; Peng Z
    Waste Manag; 2019 Mar; 87():798-804. PubMed ID: 31109584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.
    Xiao C; Wu X; Chi R
    Appl Biochem Biotechnol; 2015 May; 176(2):518-28. PubMed ID: 25822597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.