BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32295298)

  • 1. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR; Sarwar MU; Khan S; Iwendi C; Mittal M; Kumar N
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.
    Della Mea V; Quattrin O; Parpinel M
    Inform Health Soc Care; 2017 Dec; 42(4):321-334. PubMed ID: 28005434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of activity type in preschool children using machine learning techniques.
    Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE
    J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
    Kwon S; Zavos P; Nickele K; Sugianto A; Albert MV
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31330889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data.
    Huang EJ; Yan K; Onnela JP
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor.
    Nam Y; Park JW
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):420-6. PubMed ID: 24235114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System.
    Alo UR; Nweke HF; Teh YW; Murtaza G
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.
    Vähä-Ypyä H; Vasankari T; Husu P; Suni J; Sievänen H
    Clin Physiol Funct Imaging; 2015 Jan; 35(1):64-70. PubMed ID: 24393233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Problem of State Recognition in Injection Molding Based on Accelerometer Data Sets.
    Brunthaler J; Grabski P; Sturm V; Lubowski W; Efrosinin D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning on Prediction of Relative Physical Activity Intensity Using Medical Radar Sensor and 3D Accelerometer.
    Biró A; Szilágyi SM; Szilágyi L; Martín-Martín J; Cuesta-Vargas AI
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
    Fahim M; Lee S; Yoon Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3666-9. PubMed ID: 25570786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
    Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.