These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 32295300)

  • 21. Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties.
    Jakubiec-Krzesniak K; Rajnisz-Mateusiak A; Guspiel A; Ziemska J; Solecka J
    Pol J Microbiol; 2018; 67(3):259-272. PubMed ID: 30451442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical and functional diversity of natural products from plant associated endophytic fungi.
    Verma VC; Kharwar RN; Strobel GA
    Nat Prod Commun; 2009 Nov; 4(11):1511-32. PubMed ID: 19967984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data.
    Islam MT; Sarkar C; El-Kersh DM; Jamaddar S; Uddin SJ; Shilpi JA; Mubarak MS
    Phytother Res; 2020 Oct; 34(10):2471-2492. PubMed ID: 32248575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a 3-Alkylpyridinium Compound from the Red Sea Sponge
    O'Rourke A; Kremb S; Duggan BM; Sioud S; Kharbatia N; Raji M; Emwas AH; Gerwick WH; Voolstra CR
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29912151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico and in vitro analysis of small molecules and natural compounds targeting the 3CL protease of feline infectious peritonitis virus.
    Theerawatanasirikul S; Kuo CJ; Phetcharat N; Lekcharoensuk P
    Antiviral Res; 2020 Feb; 174():104697. PubMed ID: 31863793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemical and Computational Approach of Selected Phytocompounds from
    Rakib A; Paul A; Chy MNU; Sami SA; Baral SK; Majumder M; Tareq AM; Amin MN; Shahriar A; Uddin MZ; Dutta M; Tallei TE; Emran TB; Simal-Gandara J
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32872217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemoinformatic expedition of the chemical space of fungal products.
    González-Medina M; Prieto-Martínez FD; Naveja JJ; Méndez-Lucio O; El-Elimat T; Pearce CJ; Oberlies NH; Figueroa M; Medina-Franco JL
    Future Med Chem; 2016 Aug; 8(12):1399-412. PubMed ID: 27485744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Secondary metabolites from marine-derived microorganisms.
    Chen G; Wang HF; Pei YH
    J Asian Nat Prod Res; 2014 Jan; 16(1):105-22. PubMed ID: 24215463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus.
    Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A
    Molecules; 2020 May; 25(11):. PubMed ID: 32485894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developments in Exploring Fungal Secondary Metabolites as Antiviral Compounds and Advances in HIV-1 Inhibitor Screening Assays.
    Nzimande B; Makhwitine JP; Mkhwanazi NP; Ndlovu SI
    Viruses; 2023 Apr; 15(5):. PubMed ID: 37243125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protease Inhibitors: Candidate Drugs to Inhibit Severe Acute Respiratory Syndrome Coronavirus 2 Replication.
    Yamaya M; Nishimura H; Deng X; Kikuchi A; Nagatomi R
    Tohoku J Exp Med; 2020 May; 251(1):27-30. PubMed ID: 32448818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural products with antitumor activity from endophytic fungi.
    Wang LW; Zhang YL; Lin FC; Hu YZ; Zhang CL
    Mini Rev Med Chem; 2011 Oct; 11(12):1056-74. PubMed ID: 21861806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus.
    Park JY; Jeong HJ; Kim JH; Kim YM; Park SJ; Kim D; Park KH; Lee WS; Ryu YB
    Biol Pharm Bull; 2012; 35(11):2036-42. PubMed ID: 22971649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repurposing drugs against the main protease of SARS-CoV-2: mechanism-based insights supported by available laboratory and clinical data.
    Chakraborti S; Bheemireddy S; Srinivasan N
    Mol Omics; 2020 Oct; 16(5):474-491. PubMed ID: 32696772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of novel small molecule inhibitors against the NS3/4A protease of hepatitis C virus genotype 4a.
    El-Sayed SM; Ali MAM; El-Gendy BEM; Dandash SS; Issac Y; Saad R; Azab MM; Mohamed MR
    Curr Pharm Des; 2018; 24(37):4484-4491. PubMed ID: 30501598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fungal Metabolite Antagonists of Plant Pests and Human Pathogens: Structure-Activity Relationship Studies.
    Masi M; Nocera P; Reveglia P; Cimmino A; Evidente A
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29621148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant-Based Natural Products and Extracts: Potential Source to Develop New Antiviral Drug Candidates.
    Thomas E; Stewart LE; Darley BA; Pham AM; Esteban I; Panda SS
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural products and synthetic compounds as immunomodulators.
    Kayser O; Masihi KN; Kiderlen AF
    Expert Rev Anti Infect Ther; 2003 Aug; 1(2):319-35. PubMed ID: 15482127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent developments on coronavirus main protease/3C like protease inhibitors.
    Zhao Q; Weber E; Yang H
    Recent Pat Antiinfect Drug Discov; 2013 Aug; 8(2):150-6. PubMed ID: 23879823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.