These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32295379)

  • 21. Characteristics of an Amorphous Carbon Layer as a Diffusion Barrier for an Advanced Copper Interconnect.
    An BS; Kwon Y; Oh JS; Lee C; Choi S; Kim H; Lee M; Pae S; Yang CW
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3104-3113. PubMed ID: 31845581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetics and interdiffusion at the Cu/Ru(0001) interface: density functional calculations.
    Shin J; Vita A; Windu S; Choi JH; Lee SC; Lee JG
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6589-93. PubMed ID: 22121762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Challenges in bimetallic multilayer structure formation: Pt growth on Cu monolayers on Ru(0001).
    Mancera LA; Engstfeld AK; Bensch A; Behm RJ; Groß A
    Phys Chem Chem Phys; 2017 Sep; 19(35):24100-24114. PubMed ID: 28835952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct alpha Ta formation on TaN by resputtering for low resistive diffusion barriers.
    Tsao JC; Liu CP; Wang YL; Chen KW
    J Nanosci Nanotechnol; 2008 May; 8(5):2582-7. PubMed ID: 18572688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of nitrogen diffusion profile of low resistivity diffusion barrier by resputtering technology.
    Tsao JC; Liu CP; Wang YL; Chen KW
    J Nanosci Nanotechnol; 2009 Feb; 9(2):759-63. PubMed ID: 19441387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic properties and adsorption mechanism of Ru-doped copper clusters towards CH
    Boulbazine M; Boudjahem AG
    J Mol Graph Model; 2023 Jun; 121():108442. PubMed ID: 36841203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Thermal Boundary Resistance between the Interconnect Metal and Dielectric Interlayer on Temperature Increase of Interconnects in Deeply Scaled VLSI.
    Zhan T; Oda K; Ma S; Tomita M; Jin Z; Takezawa H; Mesaki K; Wu YJ; Xu Y; Matsukawa T; Matsuki T; Watanabe T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22347-22356. PubMed ID: 32315529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amorphous Ta
    An BS; Kwon Y; Oh JS; Lee M; Pae S; Yang CW
    Sci Rep; 2019 Dec; 9(1):20132. PubMed ID: 31882921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An atomic-level insight into the basic mechanism responsible for the enhancement of the catalytic oxidation of carbon monoxide on a Cu/CeO
    Koizumi K; Nobusada K; Boero M
    Phys Chem Chem Phys; 2017 Feb; 19(5):3498-3505. PubMed ID: 27901152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of H2 and H2S adsorption on niobium- and copper-doped palladium surfaces.
    Ozdogan E; Wilcox J
    J Phys Chem B; 2010 Oct; 114(40):12851-8. PubMed ID: 20845969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct-Liquid-Evaporation Chemical Vapor Deposition of Nanocrystalline Cobalt Metal for Nanoscale Copper Interconnect Encapsulation.
    Feng J; Gong X; Lou X; Gordon RG
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10914-10920. PubMed ID: 28266209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Galvanic corrosion inhibition from aspect of bonding orbital theory in Cu/Ru barrier CMP.
    Lee K; Sun S; Lee G; Yoon G; Kim D; Hwang J; Jeong H; Song T; Paik U
    Sci Rep; 2021 Oct; 11(1):21214. PubMed ID: 34707193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First-principles investigation of copper diffusion barrier performance in defective 2D layered materials.
    Ahmed M; Li Y; Chen W; Li EP
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 34986464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of Scaling Effect for Emerging Nanoscale Interconnect Materials.
    Zhao K; Hu Y; Du G; Zhao Y; Dong J
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of copper organometallic precursors with barrier layers of Ti, Ta and W and their nitrides: a first-principles molecular dynamics study.
    Machado E; Kaczmarski M; Braida B; Ordejón P; Garg D; Norman J; Cheng H
    J Mol Model; 2007 Jul; 13(6-7):861-4. PubMed ID: 17347825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of encapsulation on electronic transport properties of nanoscale Cu(111) films.
    Shinde PP; Adiga SP; Pandian S; Mayya KS; Shin HJ; Park S
    Sci Rep; 2019 Mar; 9(1):3488. PubMed ID: 30837632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Ta and TaN diffusion barriers beneath Cu layers using picosecond ultrasonics.
    Bryner J; Profunser DM; Vollmann J; Mueller E; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1269-75. PubMed ID: 16797048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of interfacial condition on electromigration for narrow and wide copper interconnects.
    Cheng YL; Wang YL
    J Nanosci Nanotechnol; 2008 May; 8(5):2494-9. PubMed ID: 18572672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust Co alloy design for Co interconnects using a self-forming barrier layer.
    Kim C; Kang G; Jung Y; Kim JY; Lee GB; Hong D; Lee Y; Hwang SG; Jung IH; Joo YC
    Sci Rep; 2022 Jul; 12(1):12291. PubMed ID: 35853980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.