BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32295487)

  • 1. Natural microalgal cultivation systems using primary effluent and excess sludge.
    Yukiyo Y; Hiroyuki S
    Environ Technol; 2021 Nov; 42(25):3907-3919. PubMed ID: 32295487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater.
    Arias DM; Solé-Bundó M; Garfí M; Ferrer I; García J; Uggetti E
    Bioresour Technol; 2018 Jan; 247():513-519. PubMed ID: 28972904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae as biological treatment for municipal wastewater - effects on the sludge handling in a treatment plant.
    Olsson J; Schwede S; Nehrenheim E; Thorin E
    Water Sci Technol; 2018 Sep; 78(3-4):644-654. PubMed ID: 30208005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage.
    Hidaka T; Inoue K; Suzuki Y; Tsumori J
    Bioresour Technol; 2014 Oct; 170():83-89. PubMed ID: 25127007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment.
    Huang KX; Vadiveloo A; Zhou JL; Yang L; Chen DZ; Gao F
    Bioresour Technol; 2023 May; 376():128941. PubMed ID: 36948428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae.
    Avila R; Carrero E; Vicent T; Blánquez P
    Waste Manag; 2021 Apr; 124():254-263. PubMed ID: 33639410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced near-zero waste treatment of food processing wastewater with water, carbon, and nutrient recovery.
    Grossman AD; Belete YZ; Boussiba S; Yogev U; Posten C; Ortiz Tena F; Thomsen L; Wang S; Gross A; Leu S; Bernstein R
    Sci Total Environ; 2021 Jul; 779():146373. PubMed ID: 34030249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester.
    Moungmoon T; Chaichana C; Pumas C; Pathom-Aree W; Ruangrit K; Pekkoh J
    Sci Total Environ; 2020 Apr; 714():136577. PubMed ID: 31982736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions.
    Cho HU; Kim YM; Park JM
    Bioresour Technol; 2017 Mar; 228():290-297. PubMed ID: 28081527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge.
    Lee SA; Lee N; Oh HM; Ahn CY
    J Microbiol Biotechnol; 2019 Sep; 29(9):1434-1443. PubMed ID: 31434363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation.
    Guldhe A; Kumari S; Ramanna L; Ramsundar P; Singh P; Rawat I; Bux F
    J Environ Manage; 2017 Dec; 203(Pt 1):299-315. PubMed ID: 28803154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment.
    Ji B; Zhang M; Gu J; Ma Y; Liu Y
    Water Res; 2020 Jul; 179():115884. PubMed ID: 32388049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.
    Cho S; Lee N; Park S; Yu J; Luong TT; Oh YK; Lee T
    Bioresour Technol; 2013 Mar; 131():515-20. PubMed ID: 23453233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal.
    Solé-Bundó M; Garfí M; Matamoros V; Ferrer I
    Sci Total Environ; 2019 Apr; 660():974-981. PubMed ID: 30743981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher biomass productivity of microalgae in an attached growth system, using wastewater.
    Lee SH; Oh HM; Jo BH; Lee SA; Shin SY; Kim HS; Lee SH; Ahn CY
    J Microbiol Biotechnol; 2014 Nov; 24(11):1566-73. PubMed ID: 25112320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of a natural substrate for immobilization of microalgae cultivated in wastewater.
    Garbowski T; Pietryka M; Pulikowski K; Richter D
    Sci Rep; 2020 May; 10(1):7915. PubMed ID: 32404871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined yeast and microalgal cultivation in a pilot-scale raceway pond for urban wastewater treatment and potential biodiesel production.
    Iasimone F; Zuccaro G; D'Oriano V; Franci G; Galdiero M; Pirozzi D; De Felice V; Pirozzi F
    Water Sci Technol; 2018 Feb; 77(3-4):1062-1071. PubMed ID: 29488969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trade-offs between effluent quality and ammonia volatilisation with CO
    Sutherland DL; Burke J; Ralph PJ
    J Environ Manage; 2021 Jan; 277():111398. PubMed ID: 33039702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.