These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32296033)

  • 1. WIP1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC.
    Deng K; Liu L; Tan X; Zhang Z; Li J; Ou Y; Wang X; Yang S; Xiang R; Sun P
    Signal Transduct Target Ther; 2020 Apr; 5(1):36. PubMed ID: 32296033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of p38 MAPK contributes to stem cell-like properties of non-small cell lung cancer.
    Fang Y; Wang J; Wang G; Zhou C; Wang P; Zhao S; Zhao S; Huang S; Su W; Jiang P; Chang A; Xiang R; Sun P
    Oncotarget; 2017 Apr; 8(16):26702-26717. PubMed ID: 28460458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical significance of Wip1 overexpression and its association with the p38MAPK/p53/p16 pathway in NSCLC.
    Yang S; Dong S; Qu X; Zhong X; Zhang Q
    Mol Med Rep; 2017 Feb; 15(2):719-723. PubMed ID: 27959454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase.
    Yoda A; Toyoshima K; Watanabe Y; Onishi N; Hazaka Y; Tsukuda Y; Tsukada J; Kondo T; Tanaka Y; Minami Y
    J Biol Chem; 2008 Jul; 283(27):18969-79. PubMed ID: 18482988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FOXC1 induces cancer stem cell-like properties through upregulation of beta-catenin in NSCLC.
    Cao S; Wang Z; Gao X; He W; Cai Y; Chen H; Xu R
    J Exp Clin Cancer Res; 2018 Sep; 37(1):220. PubMed ID: 30189871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers.
    Yu E; Ahn YS; Jang SJ; Kim MJ; Yoon HS; Gong G; Choi J
    Breast Cancer Res Treat; 2007 Mar; 101(3):269-78. PubMed ID: 16897432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wip1 regulates SKOV3 cell apoptosis through the p38 MAPK signaling pathway.
    Feng Y; Liu F; Du Z; Zhao D; Cheng J; Guo W
    Mol Med Rep; 2017 Jun; 15(6):3651-3657. PubMed ID: 28440479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Regulation of Trophoblastic p53 Homeostasis by the p38-Wip1 Feedback Loop is Disturbed in Placentas from Pregnancies Complicated by Preeclampsia.
    Tan B; Tong C; Yuan Y; Xu P; Wen L; Zhang C; Zheng Y; Lin L; Zhu F; Gui S; Wang L; Gao R; Li J; Qi H; Baker PN
    Cell Physiol Biochem; 2019; 52(2):315-335. PubMed ID: 30816677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Her2 promotes early dissemination of breast cancer by suppressing the p38-MK2-Hsp27 pathway that is targetable by Wip1 inhibition.
    Wang J; Wang G; Cheng D; Huang S; Chang A; Tan X; Wang Q; Zhao S; Wu D; Liu AT; Yang S; Xiang R; Sun P
    Oncogene; 2020 Oct; 39(40):6313-6326. PubMed ID: 32848211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing of PPM1D inhibits cell proliferation and invasion through the p38 MAPK and p53 signaling pathway in papillary thyroid carcinoma.
    Lu ZW; Wen D; Wei WJ; Han LT; Xiang J; Wang YL; Wang Y; Liao T; Ji QH
    Oncol Rep; 2020 Mar; 43(3):783-794. PubMed ID: 31922231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway.
    Xie C; Zhu J; Wang X; Chen J; Geng S; Wu J; Zhong C; Li X
    J Exp Clin Cancer Res; 2019 Jan; 38(1):39. PubMed ID: 30691509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of Wip1 Enhances Sensitivity to Radiation in HeLa Cells Through Activation of p38 MAPK.
    Wang HY; Liu ZS; Qiu L; Guo J; Li YF; Zhang J; Wang TJ; Liu XD
    Oncol Res; 2014; 22(4):225-233. PubMed ID: 26351212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a homeostatic regulator, Wip1 (wild-type p53-induced phosphatase), is temporally induced by c-Jun and p53 in response to UV irradiation.
    Song JY; Han HS; Sabapathy K; Lee BM; Yu E; Choi J
    J Biol Chem; 2010 Mar; 285(12):9067-76. PubMed ID: 20093361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E2F1 modulates p38 MAPK phosphorylation via transcriptional regulation of ASK1 and Wip1.
    Hershko T; Korotayev K; Polager S; Ginsberg D
    J Biol Chem; 2006 Oct; 281(42):31309-16. PubMed ID: 16912047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wip1 phosphatase: between p53 and MAPK kinases pathways.
    Goloudina AR; Kochetkova EY; Pospelova TV; Demidov ON
    Oncotarget; 2016 May; 7(21):31563-71. PubMed ID: 26883196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation.
    Takekawa M; Adachi M; Nakahata A; Nakayama I; Itoh F; Tsukuda H; Taya Y; Imai K
    EMBO J; 2000 Dec; 19(23):6517-26. PubMed ID: 11101524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p38 MAPK signaling pathway activation by phenyl benzoxime in SNU-306 cells causes induction of apoptosis.
    Chen W; Tan Y; Zhang Y
    Microb Pathog; 2019 Jan; 126():74-78. PubMed ID: 30347260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAPK p38 and JNK have opposing activities on TRAIL-induced apoptosis activation in NSCLC H460 cells that involves RIP1 and caspase-8 and is mediated by Mcl-1.
    Azijli K; Yuvaraj S; van Roosmalen I; Flach K; Giovannetti E; Peters GJ; de Jong S; Kruyt FA
    Apoptosis; 2013 Jul; 18(7):851-60. PubMed ID: 23456625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schisandrin B inhibits epithelial‑mesenchymal transition and stemness of large‑cell lung cancer cells and tumorigenesis in xenografts via inhibiting the NF‑κB and p38 MAPK signaling pathways.
    Li S; Wang H; Ma R; Wang L
    Oncol Rep; 2021 Jun; 45(6):. PubMed ID: 33907830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel assay for screening WIP1 phosphatase substrates in nuclear extracts.
    Storchova R; Burdova K; Palek M; Medema RH; Macurek L
    FEBS J; 2021 Oct; 288(20):6035-6051. PubMed ID: 33982878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.