These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32296182)

  • 1. A neural circuit mechanism for mechanosensory feedback control of ingestion.
    Kim DY; Heo G; Kim M; Kim H; Jin JA; Kim HK; Jung S; An M; Ahn BH; Park JH; Park HE; Lee M; Lee JW; Schwartz GJ; Kim SY
    Nature; 2020 Apr; 580(7803):376-380. PubMed ID: 32296182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemosensory modulation of neural circuits for sodium appetite.
    Lee S; Augustine V; Zhao Y; Ebisu H; Ho B; Kong D; Oka Y
    Nature; 2019 Apr; 568(7750):93-97. PubMed ID: 30918407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural signalling of gut mechanosensation in ingestive and digestive processes.
    Kim M; Heo G; Kim SY
    Nat Rev Neurosci; 2022 Mar; 23(3):135-156. PubMed ID: 34983992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parabrachial opioidergic projections to preoptic hypothalamus mediate behavioral and physiological thermal defenses.
    Norris AJ; Shaker JR; Cone AL; Ndiokho IB; Bruchas MR
    Elife; 2021 Mar; 10():. PubMed ID: 33667158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldosterone-sensitive HSD2 neurons in mice.
    Gasparini S; Resch JM; Narayan SV; Peltekian L; Iverson GN; Karthik S; Geerling JC
    Brain Struct Funct; 2019 Jan; 224(1):387-417. PubMed ID: 30343334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.
    Essner RA; Smith AG; Jamnik AA; Ryba AR; Trutner ZD; Carter ME
    J Neurosci; 2017 Sep; 37(36):8678-8687. PubMed ID: 28821663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential appetite suppression by oral and visceral feedback to the brainstem.
    Ly T; Oh JY; Sivakumar N; Shehata S; La Santa Medina N; Huang H; Liu Z; Fang W; Barnes C; Dundar N; Jarvie BC; Ravi A; Barnhill OK; Li C; Lee GR; Choi J; Jang H; Knight ZA
    Nature; 2023 Dec; 624(7990):130-137. PubMed ID: 37993711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission.
    Femenía T; Manzanares J
    Addict Biol; 2012 Mar; 17(2):322-37. PubMed ID: 21966993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear transcriptional changes in hypothalamus of Pomc enhancer knockout mice after excessive alcohol drinking.
    Zhou Y; Liang Y; Low MJ; Kreek MJ
    Genes Brain Behav; 2019 Nov; 18(8):e12600. PubMed ID: 31339663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an upstream regulator of prodynorphin mRNA expression in neurons.
    Dong YX; Fukuchi M; Inoue M; Takasaki I; Tabuchi A; Wu CF; Tsuda M
    Neurosci Lett; 2010 Nov; 484(3):174-7. PubMed ID: 20728507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper gastrointestinal sensitivity to meal-related signals in adult humans - relevance to appetite regulation and gut symptoms in health, obesity and functional dyspepsia.
    Feinle-Bisset C
    Physiol Behav; 2016 Aug; 162():69-82. PubMed ID: 27013098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of kappa-opioid receptor system expression in distinct brain regions of a genetic model of enhanced ethanol withdrawal severity.
    Beadles-Bohling AS; Wiren KM
    Brain Res; 2005 Jun; 1046(1-2):77-89. PubMed ID: 15869750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholecystokinin and gut-brain signalling.
    Dockray GJ
    Regul Pept; 2009 Jun; 155(1-3):6-10. PubMed ID: 19345244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDYN, a gene implicated in brain/mental disorders, is targeted by REST in the adult human brain.
    Henriksson R; Bäckman CM; Harvey BK; Kadyrova H; Bazov I; Shippenberg TS; Bakalkin G
    Biochim Biophys Acta; 2014 Nov; 1839(11):1226-32. PubMed ID: 25220237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypothalamic regulation of food intake.
    Palkovits M
    Ideggyogy Sz; 2003 Sep; 56(9-10):288-302. PubMed ID: 14608950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain.
    Lin S; Boey D; Lee N; Schwarzer C; Sainsbury A; Herzog H
    Neuropeptides; 2006 Apr; 40(2):115-23. PubMed ID: 16439015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral signals affecting food intake.
    Stubbs RJ
    Nutrition; 1999; 15(7-8):614-25. PubMed ID: 10422099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prodynorphin storage and processing in axon terminals and dendrites.
    Yakovleva T; Bazov I; Cebers G; Marinova Z; Hara Y; Ahmed A; Vlaskovska M; Johansson B; Hochgeschwender U; Singh IN; Bruce-Keller AJ; Hurd YL; Kaneko T; Terenius L; Ekström TJ; Hauser KF; Pickel VM; Bakalkin G
    FASEB J; 2006 Oct; 20(12):2124-6. PubMed ID: 16966485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of antisense FosB and CREB on the expression of prodynorphin gene in rats with levodopa-induced dyskinesias.
    Chen Z; Guan Q; Cao X; Xu Y; Wang L; Sun S
    J Huazhong Univ Sci Technolog Med Sci; 2006; 26(5):542-4. PubMed ID: 17219962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prodynorphin transcripts and proteins differentially expressed and regulated in the adult human brain.
    Nikoshkov A; Hurd YL; Yakovleva T; Bazov I; Marinova Z; Cebers G; Pasikova N; Gharibyan A; Terenius L; Bakalkin G
    FASEB J; 2005 Sep; 19(11):1543-5. PubMed ID: 16014400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.