These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 32296692)
1. Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Xu B; Ye J; Yuan FZ; Zhang JY; Chen YR; Fan BS; Jiang D; Jiang WB; Wang X; Yu JK Front Bioeng Biotechnol; 2020; 8():247. PubMed ID: 32296692 [TBL] [Abstract][Full Text] [Related]
2. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Yang J; Zhang YS; Yue K; Khademhosseini A Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667 [TBL] [Abstract][Full Text] [Related]
3. Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Yang Z; Yi P; Liu Z; Zhang W; Mei L; Feng C; Tu C; Li Z Front Bioeng Biotechnol; 2022; 10():865770. PubMed ID: 35656197 [TBL] [Abstract][Full Text] [Related]
4. Modulating design parameters to drive cell invasion into hydrogels for osteochondral tissue formation. Schwab A; Wesdorp MA; Xu J; Abinzano F; Loebel C; Falandt M; Levato R; Eglin D; Narcisi R; Stoddart MJ; Malda J; Burdick JA; D'Este M; van Osch GJVM J Orthop Translat; 2023 Jul; 41():42-53. PubMed ID: 37691639 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Vainieri ML; Lolli A; Kops N; D'Atri D; Eglin D; Yayon A; Alini M; Grad S; Sivasubramaniyan K; van Osch GJVM Acta Biomater; 2020 Jan; 101():293-303. PubMed ID: 31726249 [TBL] [Abstract][Full Text] [Related]
6. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800 [TBL] [Abstract][Full Text] [Related]
7. Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. Cho H; Kim J; Kim S; Jung YC; Wang Y; Kang BJ; Kim K J Control Release; 2020 Nov; 327():284-295. PubMed ID: 32763434 [TBL] [Abstract][Full Text] [Related]
8. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. Singh YP; Moses JC; Bhardwaj N; Mandal BB J Mater Chem B; 2018 Sep; 6(35):5499-5529. PubMed ID: 32254962 [TBL] [Abstract][Full Text] [Related]
9. Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Zarrintaj P; Khodadadi Yazdi M; Youssefi Azarfam M; Zare M; Ramsey JD; Seidi F; Reza Saeb M; Ramakrishna S; Mozafari M Tissue Eng Part A; 2021 Jun; 27(11-12):821-843. PubMed ID: 33779319 [TBL] [Abstract][Full Text] [Related]
10. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Liu Y; Peng L; Li L; Huang C; Shi K; Meng X; Wang P; Wu M; Li L; Cao H; Wu K; Zeng Q; Pan H; Lu WW; Qin L; Ruan C; Wang X Biomaterials; 2021 Dec; 279():121216. PubMed ID: 34739982 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration. Zhang W; Zha K; Hu W; Xiong Y; Knoedler S; Obed D; Panayi AC; Lin Z; Cao F; Mi B; Liu G Biomater Res; 2023 Aug; 27(1):76. PubMed ID: 37542353 [TBL] [Abstract][Full Text] [Related]
12. The Role of Extracellular Matrix (ECM) Adhesion Motifs in Functionalised Hydrogels. Morwood AJ; El-Karim IA; Clarke SA; Lundy FT Molecules; 2023 Jun; 28(12):. PubMed ID: 37375171 [TBL] [Abstract][Full Text] [Related]
13. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. Li M; Song P; Wang W; Xu Y; Li J; Wu L; Gui X; Zeng Z; Zhou Z; Liu M; Kong Q; Fan Y; Zhang X; Zhou C; Liu L J Mater Chem B; 2022 Jun; 10(22):4172-4188. PubMed ID: 35531933 [TBL] [Abstract][Full Text] [Related]
15. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220 [TBL] [Abstract][Full Text] [Related]
16. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Flégeau K; Pace R; Gautier H; Rethore G; Guicheux J; Le Visage C; Weiss P Adv Colloid Interface Sci; 2017 Sep; 247():589-609. PubMed ID: 28754381 [TBL] [Abstract][Full Text] [Related]
17. Exosome-Laden Hydrogels: A Novel Cell-free Strategy for Sun J; Yin Z; Wang X; Su J Front Bioeng Biotechnol; 2022; 10():866208. PubMed ID: 35433664 [No Abstract] [Full Text] [Related]
18. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related]
19. Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments. Madl CM; Flaig IA; Holbrook CA; Wang YX; Blau HM Biomaterials; 2021 Aug; 275():120973. PubMed ID: 34224984 [TBL] [Abstract][Full Text] [Related]
20. Repair of osteochondral defects mediated by double-layer scaffolds with natural osteochondral-biomimetic microenvironment and interface. Wang T; Xu W; Zhao X; Bai B; Hua Y; Tang J; Chen F; Liu Y; Wang Y; Zhou G; Cao Y Mater Today Bio; 2022 Mar; 14():100234. PubMed ID: 35308043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]