BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32296795)

  • 1. Development of a facile and sensitive method for detecting alkaline phosphatase activity in serum with fluorescent gold nanoclusters based on the inner filter effect.
    Qi S; Zheng H; Qin H; Zhai H
    Analyst; 2020 Jun; 145(11):3871-3877. PubMed ID: 32296795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Turn-On Fluorescent Sensor for Selective and Sensitive Detection of Alkaline Phosphatase Activity with Gold Nanoclusters Based on Inner Filter Effect.
    Liu H; Li M; Xia Y; Ren X
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):120-126. PubMed ID: 27966342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile and Sensitive Fluorescence Sensing of Alkaline Phosphatase Activity with Photoluminescent Carbon Dots Based on Inner Filter Effect.
    Li G; Fu H; Chen X; Gong P; Chen G; Xia L; Wang H; You J; Wu Y
    Anal Chem; 2016 Mar; 88(5):2720-6. PubMed ID: 26820049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratiometric fluorescence determination of alkaline phosphatase activity based on dual emission of bovine serum albumin-stabilized gold nanoclusters and the inner filter effect.
    Pu L; Xia M; Sun P; Zhang Y
    Analyst; 2021 Feb; 146(3):943-948. PubMed ID: 33242047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Referenced Ratiometric Detection of Sulfatase Activity with Dual-Emissive Urease-Encapsulated Gold Nanoclusters.
    Deng HH; Peng HP; Huang KY; He SB; Yuan QF; Lin Z; Chen RT; Xia XH; Chen W
    ACS Sens; 2019 Feb; 4(2):344-352. PubMed ID: 30652857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-soluble MoS
    Zhong Y; Xue F; Wei P; Li R; Cao C; Yi T
    Nanoscale; 2018 Dec; 10(45):21298-21306. PubMed ID: 30422141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters.
    Liu H; Jia L; Wang Y; Wang M; Gao Z; Ren X
    Anal Bioanal Chem; 2019 May; 411(12):2531-2543. PubMed ID: 30828757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient dual-mode detection of AFB1 based on the inner filter effect: Donor-acceptor selection and application.
    Xiong J; Sun B; Zhang S; Wang S; Qin L; Jiang H
    Anal Chim Acta; 2024 Apr; 1298():342384. PubMed ID: 38462339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of stable CdTe/CdS QDs using dithiol as surface ligand for alkaline phosphatase detection based on inner filter effect.
    Mao G; Zhang Q; Yang Y; Ji X; He Z
    Anal Chim Acta; 2019 Jan; 1047():208-213. PubMed ID: 30567651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kojic acid capped gold nanoclusters with aggregation-induced emission for fluorometric screening of the activity of alkaline phosphatase.
    Li Y; Du Q; Zhang X; Cao H; Huang Y
    Mikrochim Acta; 2019 Jul; 186(8):577. PubMed ID: 31346718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity.
    Wang HB; Tao BB; Wu NN; Zhang HD; Liu YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120948. PubMed ID: 35104744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric detection of alkaline phosphatase based on aggregation-induced emission enhancement.
    Qu F; Meng L; Zi Y; You J
    Anal Bioanal Chem; 2019 Nov; 411(28):7431-7440. PubMed ID: 31655858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen doped carbon dots for turn-off fluorescent detection of alkaline phosphatase activity based on inner filter effect.
    Zhang Y; Nie Y; Zhu R; Han D; Zhao H; Li Z
    Talanta; 2019 Nov; 204():74-81. PubMed ID: 31357360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles.
    Liu Y; Li H; Guo B; Wei L; Chen B; Zhang Y
    Biosens Bioelectron; 2017 May; 91():734-740. PubMed ID: 28130993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of alkaline phosphatase activity based on enzyme-triggered generation of a thiol and the fluorescence quenching of silver nanoclusters.
    Luo M; Su Z; Wang X; Li L; Tu Y; Yan J
    Mikrochim Acta; 2019 Feb; 186(3):180. PubMed ID: 30771096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters.
    Wang X; Liu Z; Zhao W; Sun J; Qian B; Wang X; Zeng H; Du D; Duan J
    Anal Bioanal Chem; 2019 Feb; 411(5):1009-1017. PubMed ID: 30552495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.
    Halawa MI; Gao W; Saqib M; Kitte SA; Wu F; Xu G
    Biosens Bioelectron; 2017 Sep; 95():8-14. PubMed ID: 28399445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorometric and colorimetric dual-readout alkaline phosphatase activity assay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect.
    Chen C; Zhang G; Ni P; Jiang Y; Lu Y; Lu Z
    Mikrochim Acta; 2019 May; 186(6):348. PubMed ID: 31079308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band-pass filter-assisted ratiometric fluorescent nanoprobe composed of N-(2-aminoethyl-1,8-naphthalimide)-functionalized gold nanoclusters for the determination of alkaline phosphatase using digital image analysis.
    Cao N; Hou J; Chen Q; Zhang C; Zhang J; Sun Y; Chen Q; He L; Zhang K
    Mikrochim Acta; 2021 Jun; 188(6):218. PubMed ID: 34075479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold Nanocluster-Assisted Fluorescent Detection for Hydrogen Peroxide and Cholesterol Based on the Inner Filter Effect of Gold Nanoparticles.
    Chang HC; Ho JA
    Anal Chem; 2015 Oct; 87(20):10362-7. PubMed ID: 26379119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.