These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 32296896)
1. Clinical utility of radiomics at baseline rectal MRI to predict complete response of rectal cancer after chemoradiation therapy. Petkovska I; Tixier F; Ortiz EJ; Golia Pernicka JS; Paroder V; Bates DD; Horvat N; Fuqua J; Schilsky J; Gollub MJ; Garcia-Aguilar J; Veeraraghavan H Abdom Radiol (NY); 2020 Nov; 45(11):3608-3617. PubMed ID: 32296896 [TBL] [Abstract][Full Text] [Related]
2. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy. Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200 [TBL] [Abstract][Full Text] [Related]
3. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
4. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
5. Radiomics performs comparable to morphologic assessment by expert radiologists for prediction of response to neoadjuvant chemoradiotherapy on baseline staging MRI in rectal cancer. van Griethuysen JJM; Lambregts DMJ; Trebeschi S; Lahaye MJ; Bakers FCH; Vliegen RFA; Beets GL; Aerts HJWL; Beets-Tan RGH Abdom Radiol (NY); 2020 Mar; 45(3):632-643. PubMed ID: 31734709 [TBL] [Abstract][Full Text] [Related]
6. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017 [TBL] [Abstract][Full Text] [Related]
7. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192 [TBL] [Abstract][Full Text] [Related]
8. MRI radiomics features of mesorectal fat can predict response to neoadjuvant chemoradiation therapy and tumor recurrence in patients with locally advanced rectal cancer. Jayaprakasam VS; Paroder V; Gibbs P; Bajwa R; Gangai N; Sosa RE; Petkovska I; Golia Pernicka JS; Fuqua JL; Bates DDB; Weiser MR; Cercek A; Gollub MJ Eur Radiol; 2022 Feb; 32(2):971-980. PubMed ID: 34327580 [TBL] [Abstract][Full Text] [Related]
9. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768 [TBL] [Abstract][Full Text] [Related]
10. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550 [TBL] [Abstract][Full Text] [Related]
11. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861 [TBL] [Abstract][Full Text] [Related]
13. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Liu Z; Zhang XY; Shi YJ; Wang L; Zhu HT; Tang Z; Wang S; Li XT; Tian J; Sun YS Clin Cancer Res; 2017 Dec; 23(23):7253-7262. PubMed ID: 28939744 [No Abstract] [Full Text] [Related]
14. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
15. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer. Fang Z; Pu H; Chen XL; Yuan Y; Zhang F; Li H Abdom Radiol (NY); 2023 Jul; 48(7):2270-2283. PubMed ID: 37085730 [TBL] [Abstract][Full Text] [Related]
16. MRI-based radiomic score increased mrTRG accuracy in predicting rectal cancer response to neoadjuvant therapy. Miranda J; Horvat N; Assuncao AN; de M Machado FA; Chakraborty J; Pandini RV; Saraiva S; Nahas CSR; Nahas SC; Nomura CH Abdom Radiol (NY); 2023 Jun; 48(6):1911-1920. PubMed ID: 37004557 [TBL] [Abstract][Full Text] [Related]
17. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics. Wan L; Sun Z; Peng W; Wang S; Li J; Zhao Q; Wang S; Ouyang H; Zhao X; Zou S; Zhang H J Magn Reson Imaging; 2022 Oct; 56(4):1130-1142. PubMed ID: 35142001 [TBL] [Abstract][Full Text] [Related]
18. Prognostic prediction value of the clinical-radiomics tumour-stroma ratio in locally advanced rectal cancer. Cai C; Hu T; Rong Z; Gong J; Tong T Eur J Radiol; 2024 Jan; 170():111254. PubMed ID: 38091662 [TBL] [Abstract][Full Text] [Related]
19. Radiomic Features of Primary Rectal Cancers on Baseline T Antunes JT; Ofshteyn A; Bera K; Wang EY; Brady JT; Willis JE; Friedman KA; Marderstein EL; Kalady MF; Stein SL; Purysko AS; Paspulati R; Gollamudi J; Madabhushi A; Viswanath SE J Magn Reson Imaging; 2020 Nov; 52(5):1531-1541. PubMed ID: 32216127 [TBL] [Abstract][Full Text] [Related]
20. Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics. Bulens P; Couwenberg A; Intven M; Debucquoy A; Vandecaveye V; Van Cutsem E; D'Hoore A; Wolthuis A; Mukherjee P; Gevaert O; Haustermans K Radiother Oncol; 2020 Jan; 142():246-252. PubMed ID: 31431368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]