BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 32297065)

  • 1. The role and molecular mechanism of epigenetics in cardiac hypertrophy.
    Lei H; Hu J; Sun K; Xu D
    Heart Fail Rev; 2021 Nov; 26(6):1505-1514. PubMed ID: 32297065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of histone methylation and acetylation modifiers in cardiac hypertrophy.
    Qin J; Guo N; Tong J; Wang Z
    J Mol Cell Cardiol; 2021 Oct; 159():120-129. PubMed ID: 34175302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics in cardiac development, function, and disease.
    Nührenberg T; Gilsbach R; Preissl S; Schnick T; Hein L
    Cell Tissue Res; 2014 Jun; 356(3):585-600. PubMed ID: 24817102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy.
    Dong Y; Xu S; Liu J; Ponnusamy M; Zhao Y; Zhang Y; Wang Q; Li P; Wang K
    Int J Biol Sci; 2018; 14(9):1133-1141. PubMed ID: 29989099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure.
    Greco CM; Condorelli G
    Nat Rev Cardiol; 2015 Aug; 12(8):488-97. PubMed ID: 25962978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetics in heart failure.
    Papait R; Condorelli G
    Ann N Y Acad Sci; 2010 Feb; 1188():159-64. PubMed ID: 20201899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of epigenetics in the management of cardiovascular disease: a review.
    Cao Y; Lu L; Liu M; Li XC; Sun RR; Zheng Y; Zhang PY
    Eur Rev Med Pharmacol Sci; 2014 Oct; 18(20):3097-104. PubMed ID: 25392111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent discoveries of the role of histone modifications and related inhibitors in pathological cardiac hypertrophy.
    Wu KJ; Chen Q; Leung CH; Sun N; Gao F; Chen Z
    Drug Discov Today; 2024 Feb; 29(2):103878. PubMed ID: 38211819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic Therapy for the Treatment of Hypertension-Induced Cardiac Hypertrophy and Fibrosis.
    Watson CJ; Horgan S; Neary R; Glezeva N; Tea I; Corrigan N; McDonald K; Ledwidge M; Baugh J
    J Cardiovasc Pharmacol Ther; 2016 Jan; 21(1):127-37. PubMed ID: 26130616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy.
    Papait R; Cattaneo P; Kunderfranco P; Greco C; Carullo P; Guffanti A; Viganò V; Stirparo GG; Latronico MV; Hasenfuss G; Chen J; Condorelli G
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20164-9. PubMed ID: 24284169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HOPX Plays a Critical Role in Antiretroviral Drugs Induced Epigenetic Modification and Cardiac Hypertrophy.
    Kashyap S; Rabbani M; de Lima I; Kondrachuk O; Patel R; Shafiei MS; Mukker A; Rajakumar A; Gupta MK
    Cells; 2021 Dec; 10(12):. PubMed ID: 34943964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetics of Aberrant Cardiac Wound Healing.
    Russell-Hallinan A; Watson CJ; Baugh JA
    Compr Physiol; 2018 Mar; 8(2):451-491. PubMed ID: 29687888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of histone acetylation sites in cardiac hypertrophy and heart failure.
    Funamoto M; Imanishi M; Tsuchiya K; Ikeda Y
    Front Cardiovasc Med; 2023; 10():1133611. PubMed ID: 37008337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of histone H3 phosphorylation by CaMKIIδ in response to haemodynamic cardiac stress.
    Awad S; Al-Haffar KM; Marashly Q; Quijada P; Kunhi M; Al-Yacoub N; Wade FS; Mohammed SF; Al-Dayel F; Sutherland G; Assiri A; Sussman M; Bers D; Al-Habeeb W; Poizat C
    J Pathol; 2015 Mar; 235(4):606-18. PubMed ID: 25421395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic associations in relation to cardiovascular prevention and therapeutics.
    Voelter-Mahlknecht S
    Clin Epigenetics; 2016; 8():4. PubMed ID: 26779291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the Epigenome in Heart Failure.
    Papait R; Serio S; Condorelli G
    Physiol Rev; 2020 Oct; 100(4):1753-1777. PubMed ID: 32326823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic-related therapeutic challenges in cardiovascular disease.
    Schiano C; Vietri MT; Grimaldi V; Picascia A; De Pascale MR; Napoli C
    Trends Pharmacol Sci; 2015 Apr; 36(4):226-35. PubMed ID: 25758254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture.
    McKinsey TA; Vondriska TM; Wang Y
    F1000Res; 2018; 7():. PubMed ID: 30416708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic Regulation in Atherosclerosis.
    Wang C; Wang F; Liu F; Chen S
    Discov Med; 2021; 31(162):45-49. PubMed ID: 34965371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacoepigenetics in heart failure.
    Mateo Leach I; van der Harst P; de Boer RA
    Curr Heart Fail Rep; 2010 Jun; 7(2):83-90. PubMed ID: 20424992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.