These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 32297210)
21. HSP70 mediates a crosstalk between the estrogen and the heat shock response pathways. Silveira MAD; Khadangi F; Mersaoui SY; Naik D; Masson JY; Bilodeau S J Biol Chem; 2023 Feb; 299(2):102872. PubMed ID: 36610605 [TBL] [Abstract][Full Text] [Related]
22. Heat shock factor 1 (HSF1)-targeted anticancer therapeutics: overview of current preclinical progress. Kijima T; Prince T; Neckers L; Koga F; Fujii Y Expert Opin Ther Targets; 2019 May; 23(5):369-377. PubMed ID: 30931649 [TBL] [Abstract][Full Text] [Related]
23. Roles of heat shock factor 1 beyond the heat shock response. Barna J; Csermely P; Vellai T Cell Mol Life Sci; 2018 Aug; 75(16):2897-2916. PubMed ID: 29774376 [TBL] [Abstract][Full Text] [Related]
24. An Important Role for RPRD1B in the Heat Shock Response. Cugusi S; Bajpe PK; Mitter R; Patel H; Stewart A; Svejstrup JQ Mol Cell Biol; 2022 Oct; 42(10):e0017322. PubMed ID: 36121223 [TBL] [Abstract][Full Text] [Related]
25. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter. Kijima T; Eguchi T; Neckers L; Prince TL Methods Mol Biol; 2018; 1709():35-45. PubMed ID: 29177649 [TBL] [Abstract][Full Text] [Related]
26. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice. Pierce A; Wei R; Halade D; Yoo SE; Ran Q; Richardson A Biochem Biophys Res Commun; 2010 Nov; 402(1):59-65. PubMed ID: 20920476 [TBL] [Abstract][Full Text] [Related]
27. HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models. Neueder A; Gipson TA; Batterton S; Lazell HJ; Farshim PP; Paganetti P; Housman DE; Bates GP Sci Rep; 2017 Oct; 7(1):12556. PubMed ID: 28970536 [TBL] [Abstract][Full Text] [Related]
28. Neuroprotective drug riluzole amplifies the heat shock factor 1 (HSF1)- and glutamate transporter 1 (GLT1)-dependent cytoprotective mechanisms for neuronal survival. Liu AY; Mathur R; Mei N; Langhammer CG; Babiarz B; Firestein BL J Biol Chem; 2011 Jan; 286(4):2785-94. PubMed ID: 21098017 [TBL] [Abstract][Full Text] [Related]
29. Genetic inactivation of essential Ciccarelli M; Masser AE; Kaimal JM; Planells J; Andréasson C Mol Biol Cell; 2023 Sep; 34(10):ar101. PubMed ID: 37467033 [TBL] [Abstract][Full Text] [Related]
30. TG2 regulates the heat-shock response by the post-translational modification of HSF1. Rossin F; Villella VR; D'Eletto M; Farrace MG; Esposito S; Ferrari E; Monzani R; Occhigrossi L; Pagliarini V; Sette C; Cozza G; Barlev NA; Falasca L; Fimia GM; Kroemer G; Raia V; Maiuri L; Piacentini M EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29752334 [TBL] [Abstract][Full Text] [Related]
31. Molecular cloning of hsf1 and hsbp1 cDNAs, and the expression of hsf1, hsbp1 and hsp70 under heat stress in the sea cucumber Apostichopus japonicus. Xu D; Sun L; Liu S; Zhang L; Yang H Comp Biochem Physiol B Biochem Mol Biol; 2016 Aug; 198():1-9. PubMed ID: 26952354 [TBL] [Abstract][Full Text] [Related]
32. HSF1 mediated stress response of heavy metals. Steurer C; Eder N; Kerschbaum S; Wegrostek C; Gabriel S; Pardo N; Ortner V; Czerny T; Riegel E PLoS One; 2018; 13(12):e0209077. PubMed ID: 30566508 [TBL] [Abstract][Full Text] [Related]
33. Neuronal cells show regulatory differences in the hsp70 gene response. Kaarniranta K; Oksala N; Karjalainen HM; Suuronen T; Sistonen L; Helminen HJ; Salminen A; Lammi MJ Brain Res Mol Brain Res; 2002 May; 101(1-2):136-40. PubMed ID: 12007842 [TBL] [Abstract][Full Text] [Related]
34. Size doesn't matter in the heat shock response. Pincus D Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399 [TBL] [Abstract][Full Text] [Related]
35. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Prince TL; Lang BJ; Guerrero-Gimenez ME; Fernandez-Muñoz JM; Ackerman A; Calderwood SK Cells; 2020 Apr; 9(4):. PubMed ID: 32331382 [TBL] [Abstract][Full Text] [Related]
36. Molecular chaperones as HSF1-specific transcriptional repressors. Shi Y; Mosser DD; Morimoto RI Genes Dev; 1998 Mar; 12(5):654-66. PubMed ID: 9499401 [TBL] [Abstract][Full Text] [Related]
37. A minimal titration model of the mammalian dynamical heat shock response. Sivéry A; Courtade E; Thommen Q Phys Biol; 2016 Dec; 13(6):066008. PubMed ID: 27926536 [TBL] [Abstract][Full Text] [Related]
38. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response. Lin YL; Tsai HC; Liu PY; Benneyworth M; Wei LN Cell Death Dis; 2017 Dec; 8(12):3203. PubMed ID: 29233969 [TBL] [Abstract][Full Text] [Related]
39. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. Zheng X; Krakowiak J; Patel N; Beyzavi A; Ezike J; Khalil AS; Pincus D Elife; 2016 Nov; 5():. PubMed ID: 27831465 [TBL] [Abstract][Full Text] [Related]
40. UBL/BAG-domain co-chaperones cause cellular stress upon overexpression through constitutive activation of Hsf1. Poulsen EG; Kampmeyer C; Kriegenburg F; Johansen JV; Hofmann K; Holmberg C; Hartmann-Petersen R Cell Stress Chaperones; 2017 Jan; 22(1):143-154. PubMed ID: 27966061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]