These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 32297506)
21. Development of an aptamer beacon for detection of interferon-gamma. Tuleuova N; Jones CN; Yan J; Ramanculov E; Yokobayashi Y; Revzin A Anal Chem; 2010 Mar; 82(5):1851-7. PubMed ID: 20121141 [TBL] [Abstract][Full Text] [Related]
22. A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol. Ma X; Li H; Qiao S; Huang C; Liu Q; Shen X; Geng Y; Xu W; Sun C Food Chem; 2020 Jan; 302():125359. PubMed ID: 31442702 [TBL] [Abstract][Full Text] [Related]
23. Aptamer switch probe based on intramolecular displacement. Tang Z; Mallikaratchy P; Yang R; Kim Y; Zhu Z; Wang H; Tan W J Am Chem Soc; 2008 Aug; 130(34):11268-9. PubMed ID: 18680291 [TBL] [Abstract][Full Text] [Related]
24. Super-resolution RNA imaging using a rhodamine-binding aptamer with fast exchange kinetics. Sunbul M; Lackner J; Martin A; Englert D; Hacene B; Grün F; Nienhaus K; Nienhaus GU; Jäschke A Nat Biotechnol; 2021 Jun; 39(6):686-690. PubMed ID: 33574610 [TBL] [Abstract][Full Text] [Related]
25. A novel reconfigurable optical biosensor based on DNA aptamers and a DNA molecular beacon. Buranachai C; Thavarungkul P; Kanatharana P J Fluoresc; 2012 Nov; 22(6):1617-25. PubMed ID: 22811040 [TBL] [Abstract][Full Text] [Related]
26. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Pang J; Zhang Z; Jin H Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458 [TBL] [Abstract][Full Text] [Related]
27. Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Nutiu R; Li Y Chemistry; 2004 Apr; 10(8):1868-76. PubMed ID: 15079825 [TBL] [Abstract][Full Text] [Related]
28. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Cruz-Aguado JA; Penner G Anal Chem; 2008 Nov; 80(22):8853-5. PubMed ID: 18947191 [TBL] [Abstract][Full Text] [Related]
29. Development of a histamine aptasensor for food safety monitoring. Dwidar M; Yokobayashi Y Sci Rep; 2019 Nov; 9(1):16659. PubMed ID: 31723193 [TBL] [Abstract][Full Text] [Related]
30. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Xu J; Shi M; Huang H; Hu K; Chen W; Huang Y; Zhao S Analyst; 2018 Aug; 143(16):3918-3925. PubMed ID: 30043777 [TBL] [Abstract][Full Text] [Related]
31. A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Wang X; Dong P; He P; Fang Y Anal Chim Acta; 2010 Jan; 658(2):128-32. PubMed ID: 20103085 [TBL] [Abstract][Full Text] [Related]
33. Dynamic Control of Aptamer-Ligand Activity Using Strand Displacement Reactions. Lloyd J; Tran CH; Wadhwani K; Cuba Samaniego C; Subramanian HKK; Franco E ACS Synth Biol; 2018 Jan; 7(1):30-37. PubMed ID: 29028334 [TBL] [Abstract][Full Text] [Related]
34. Enzymatic cleavage and mass amplification strategy for small molecule detection using aptamer-based fluorescence polarization biosensor. Kang L; Yang B; Zhang X; Cui L; Meng H; Mei L; Wu C; Ren S; Tan W Anal Chim Acta; 2015 Jun; 879():91-6. PubMed ID: 26002482 [TBL] [Abstract][Full Text] [Related]
35. Multianalytical Study of the Binding between a Small Chiral Molecule and a DNA Aptamer: Evidence for Asymmetric Steric Effect upon 3'- versus 5'-End Sequence Modification. Challier L; Miranda-Castro R; Barbe B; Fave C; Limoges B; Peyrin E; Ravelet C; Fiore E; Labbé P; Coche-Guérente L; Ennifar E; Bec G; Dumas P; Mavré F; Noël V Anal Chem; 2016 Dec; 88(23):11963-11971. PubMed ID: 27934108 [TBL] [Abstract][Full Text] [Related]
36. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging. Wirth R; Gao P; Nienhaus GU; Sunbul M; Jäschke A J Am Chem Soc; 2019 May; 141(18):7562-7571. PubMed ID: 30986047 [TBL] [Abstract][Full Text] [Related]
37. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Yang R; Tang Z; Yan J; Kang H; Kim Y; Zhu Z; Tan W Anal Chem; 2008 Oct; 80(19):7408-13. PubMed ID: 18771233 [TBL] [Abstract][Full Text] [Related]
38. Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes. Huang DW; Niu CG; Zeng GM; Ruan M Biosens Bioelectron; 2011 Nov; 29(1):178-83. PubMed ID: 21906929 [TBL] [Abstract][Full Text] [Related]
39. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. Cui L; Zou Y; Lin N; Zhu Z; Jenkins G; Yang CJ Anal Chem; 2012 Jul; 84(13):5535-41. PubMed ID: 22686244 [TBL] [Abstract][Full Text] [Related]
40. A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer-magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots. Saberi Z; Rezaei B; Khayamian T Luminescence; 2018 Jun; 33(4):640-646. PubMed ID: 29380946 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]