BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32297632)

  • 1. Catalytic mechanism of the mismatch-specific DNA glycosylase methyl-CpG-binding domain 4.
    Ouzon-Shubeita H; Jung H; Lee MH; Koag MC; Lee S
    Biochem J; 2020 May; 477(9):1601-1612. PubMed ID: 32297632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the substrate discrimination mechanisms of methyl-CpG-binding domain 4.
    Ouzon-Shubeita H; Schmaltz LF; Lee S
    Biochem J; 2021 May; 478(10):1985-1997. PubMed ID: 33960375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation.
    Hashimoto H; Zhang X; Cheng X
    Nucleic Acids Res; 2012 Sep; 40(17):8276-84. PubMed ID: 22740654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA.
    Manvilla BA; Maiti A; Begley MC; Toth EA; Drohat AC
    J Mol Biol; 2012 Jul; 420(3):164-75. PubMed ID: 22560993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.
    Moréra S; Grin I; Vigouroux A; Couvé S; Henriot V; Saparbaev M; Ishchenko AA
    Nucleic Acids Res; 2012 Oct; 40(19):9917-26. PubMed ID: 22848106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the mismatch-specific thymine glycosylase domain of human methyl-CpG-binding protein MBD4.
    Zhang W; Liu Z; Crombet L; Amaya MF; Liu Y; Zhang X; Kuang W; Ma P; Niu L; Qi C
    Biochem Biophys Res Commun; 2011 Sep; 412(3):425-8. PubMed ID: 21820404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) excise thymine glycol (Tg) from a Tg:G mispair.
    Yoon JH; Iwai S; O'Connor TR; Pfeifer GP
    Nucleic Acids Res; 2003 Sep; 31(18):5399-404. PubMed ID: 12954776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insights into the Mechanism of Base Excision by MBD4.
    Pidugu LS; Bright H; Lin WJ; Majumdar C; Van Ostrand RP; David SS; Pozharski E; Drohat AC
    J Mol Biol; 2021 Jul; 433(15):167097. PubMed ID: 34107280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the activity of methyl binding domain protein 4 (MBD4/MED1) while processing iododeoxyuridine generated DNA mispairs.
    Aziz MA; Schupp JE; Kinsella TJ
    Cancer Biol Ther; 2009 Jun; 8(12):1156-63. PubMed ID: 19395862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a thwarted mismatch glycosylase DNA repair complex.
    Barrett TE; Schärer OD; Savva R; Brown T; Jiricny J; Verdine GL; Pearl LH
    EMBO J; 1999 Dec; 18(23):6599-609. PubMed ID: 10581234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1.
    Waters TR; Gallinari P; Jiricny J; Swann PF
    J Biol Chem; 1999 Jan; 274(1):67-74. PubMed ID: 9867812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition.
    Maiti A; Morgan MT; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8890-5. PubMed ID: 18587051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex.
    Fitzgerald ME; Drohat AC
    J Biol Chem; 2008 Nov; 283(47):32680-90. PubMed ID: 18805789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases.
    Mol CD; Arvai AS; Begley TJ; Cunningham RP; Tainer JA
    J Mol Biol; 2002 Jan; 315(3):373-84. PubMed ID: 11786018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA.
    Boland MJ; Christman JK
    J Mol Biol; 2008 Jun; 379(3):492-504. PubMed ID: 18452947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs.
    Maiti A; Drohat AC
    DNA Repair (Amst); 2011 May; 10(5):545-53. PubMed ID: 21474392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain.
    Petronzelli F; Riccio A; Markham GD; Seeholzer SH; Genuardi M; Karbowski M; Yeung AT; Matsumoto Y; Bellacosa A
    J Cell Physiol; 2000 Dec; 185(3):473-80. PubMed ID: 11056019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase.
    Petronzelli F; Riccio A; Markham GD; Seeholzer SH; Stoerker J; Genuardi M; Yeung AT; Matsumoto Y; Bellacosa A
    J Biol Chem; 2000 Oct; 275(42):32422-9. PubMed ID: 10930409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MBD4-mediated glycosylase activity on a chromatin template is enhanced by acetylation.
    Ishibashi T; So K; Cupples CG; Ausió J
    Mol Cell Biol; 2008 Aug; 28(15):4734-44. PubMed ID: 18519584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.