These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32298121)

  • 1. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces.
    Aldhaleai A; Tsai PA
    Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Surfactants Affect Droplet Wetting on Hydrophobic Microstructures.
    Shardt N; Bigdeli MB; Elliott JAW; Tsai PA
    J Phys Chem Lett; 2019 Dec; 10(23):7510-7515. PubMed ID: 31763845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaporation Dynamics of Surfactant-Laden Droplets on a Superhydrophobic Surface: Influence of Surfactant Concentration.
    Aldhaleai A; Tsai PA
    Langmuir; 2022 Jan; 38(1):593-601. PubMed ID: 34967641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Wetting of Ionic Liquid Drops on Hydrophobic Microstructures.
    Aldhaleai A; Tsai PA
    Langmuir; 2022 Dec; 38(51):16073-16083. PubMed ID: 36516403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of Droplet Evaporation on Superhydrophobic Surfaces.
    Fernandes HC; Vainstein MH; Brito C
    Langmuir; 2015 Jul; 31(27):7652-9. PubMed ID: 26086999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K; Zhao Y; Ouyang G; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces.
    Jiang Y; Lian J; Jiang Z; Li Y; Wen C
    Adv Colloid Interface Sci; 2020 Apr; 278():102136. PubMed ID: 32171897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces.
    Milne AJ; Elliott JA; Zabeti P; Zhou J; Amirfazli A
    Phys Chem Chem Phys; 2011 Sep; 13(36):16208-19. PubMed ID: 21822523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition.
    Giacomello A; Chinappi M; Meloni S; Casciola CM
    Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability of Reentrant Surfaces: A Global Energy Approach.
    Silvestrini M; Brito C
    Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting on Micropatterned Surfaces: Partial Penetration in the Cassie State and Wenzel Deviation Theoretically Explained.
    Rohrs C; Azimi A; He P
    Langmuir; 2019 Nov; 35(47):15421-15430. PubMed ID: 31663751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing.
    Aldhaleai A; Tsai PA
    Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibbsian Thermodynamics of Wenzel Wetting (Was Wenzel Wrong? Revisited).
    Shardt N; Elliott JAW
    Langmuir; 2020 Jan; 36(1):435-446. PubMed ID: 31869229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
    Jiang G; Hu J; Chen L
    Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.