BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32298322)

  • 1. Validation of the Polar OH1 and M600 optical heart rate sensors during front crawl swim training.
    Olstad BH; Zinner C
    PLoS One; 2020; 15(4):e0231522. PubMed ID: 32298322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities.
    Hettiarachchi IT; Hanoun S; Nahavandi D; Nahavandi S
    PLoS One; 2019; 14(5):e0217288. PubMed ID: 31120968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Heart Rate Using the Polar OH1 and Fitbit Charge 3 Wearable Devices in Healthy Adults During Light, Moderate, Vigorous, and Sprint-Based Exercise: Validation Study.
    Muggeridge DJ; Hickson K; Davies AV; Giggins OM; Megson IL; Gorely T; Crabtree DR
    JMIR Mhealth Uhealth; 2021 Mar; 9(3):e25313. PubMed ID: 33764310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Using an Armband Optical Heart Rate Sensor in Naturalistic Environment.
    Yu H; Kotlyar M; Dufresne S; Thuras P; Pakhomov S
    Pac Symp Biocomput; 2023; 28():43-54. PubMed ID: 36540963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a Photoplethysmographic Heart Rate Monitor: Polar OH1.
    Hermand E; Cassirame J; Ennequin G; Hue O
    Int J Sports Med; 2019 Jul; 40(7):462-467. PubMed ID: 31189190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Polar M600 Optical Heart Rate and ECG Heart Rate during Exercise.
    Horton JF; Stergiou P; Fung TS; Katz L
    Med Sci Sports Exerc; 2017 Dec; 49(12):2600-2607. PubMed ID: 29135785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Smart Bracelets to Assess Heart Rate Among Students During Physical Education Lessons: Feasibility, Reliability, and Validity Study.
    Sun J; Liu Y
    JMIR Mhealth Uhealth; 2020 Aug; 8(8):e17699. PubMed ID: 32663136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study.
    Müller AM; Wang NX; Yao J; Tan CS; Low ICC; Lim N; Tan J; Tan A; Müller-Riemenschneider F
    JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14120. PubMed ID: 31579026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Heart Rate Accurately in Patients With Parkinson Disease During Intense Exercise: Usability Study of Fitbit Charge 4.
    Colonna G; Hoye J; de Laat B; Stanley G; Ibrahimy A; Tinaz S; Morris ED
    JMIR Biomed Eng; 2023 Dec; 8():e51515. PubMed ID: 38875680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and Precision of Wearable Devices for Real-Time Monitoring of Swimming Athletes.
    Cosoli G; Antognoli L; Veroli V; Scalise L
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Polar
    Schubert MM; Clark A; De La Rosa AB
    Sports Med Int Open; 2018 Jun; 2(3):E67-E70. PubMed ID: 30539120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of Wrist-Worn Photoplethysmography Devices at Measuring Heart Rate in the Laboratory and During Free-Living Activities.
    Giggins OM; Doyle J; Sojan N; Moran O; Crabtree DR; Fraser M; Muggeridge DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6970-6973. PubMed ID: 34892707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrist-worn devices for the measurement of heart rate and energy expenditure: A validation study for the Apple Watch 6, Polar Vantage V and Fitbit Sense.
    Hajj-Boutros G; Landry-Duval MA; Comtois AS; Gouspillou G; Karelis AD
    Eur J Sport Sci; 2023 Feb; 23(2):165-177. PubMed ID: 34957939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of the Polar Vantage M watch when measuring heart rate at different exercise intensities.
    Shumate T; Link M; Furness J; Kemp-Smith K; Simas V; Climstein M
    PeerJ; 2021; 9():e10893. PubMed ID: 33614295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heart Rate Monitoring Among Breast Cancer Survivors: Quantitative Study of Device Agreement in a Community-Based Exercise Program.
    Page LL; Fanning J; Phipps C; Berger A; Reed E; Ehlers D
    JMIR Cancer; 2024 Jun; 10():e51210. PubMed ID: 38900505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart rate processing algorithms and exercise duration on reliability and validity decisions in biceps-worn Polar Verity Sense and OH1 wearables.
    Navalta JW; Davis DW; Malek EM; Carrier B; Bodell NG; Manning JW; Cowley J; Funk M; Lawrence MM; DeBeliso M
    Sci Rep; 2023 Jul; 13(1):11736. PubMed ID: 37474743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions.
    Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M
    Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study.
    Nelson BW; Allen NB
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e10828. PubMed ID: 30855232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement latency significantly contributes to reduced heart rate measurement accuracy in wearable devices.
    Støve MP; Holm RS; Kjaersgaard AS; Duncker K; Jensen MR; Larsen BT
    J Med Eng Technol; 2020 Apr; 44(3):125-132. PubMed ID: 32404012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory.
    Cortesi M; Giovanardi A; Gatta G; Mangia AL; Bartolomei S; Fantozzi S
    J Sports Sci Med; 2019 Sep; 18(3):438-447. PubMed ID: 31427865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.