BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32298377)

  • 1. Combining lipoic acid to methylene blue reduces the Warburg effect in CHO cells: From TCA cycle activation to enhancing monoclonal antibody production.
    Montégut L; Martínez-Basilio PC; da Veiga Moreira J; Schwartz L; Jolicoeur M
    PLoS One; 2020; 15(4):e0231770. PubMed ID: 32298377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells.
    Bulté DB; Palomares LA; Parra CG; Martínez JA; Contreras MA; Noriega LG; Ramírez OT
    Biotechnol Bioeng; 2020 Sep; 117(9):2633-2647. PubMed ID: 32436990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of CHO cells for the development of a robust protein production platform.
    Gupta SK; Srivastava SK; Sharma A; Nalage VHH; Salvi D; Kushwaha H; Chitnis NB; Shukla P
    PLoS One; 2017; 12(8):e0181455. PubMed ID: 28763459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry.
    Ahn WS; Antoniewicz MR
    Metab Eng; 2011 Sep; 13(5):598-609. PubMed ID: 21821143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect.
    Buchsteiner M; Quek LE; Gray P; Nielsen LK
    Biotechnol Bioeng; 2018 Sep; 115(9):2315-2327. PubMed ID: 29704441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells.
    Wahrheit J; Niklas J; Heinzle E
    Metab Eng; 2014 May; 23():9-21. PubMed ID: 24525334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titer of trastuzumab produced by a Chinese hamster ovary cell line is associated with tricarboxylic acid cycle activity rather than lactate metabolism.
    Ishii Y; Imamoto Y; Yamamoto R; Tsukahara M; Wakamatsu K
    J Biosci Bioeng; 2015 Apr; 119(4):478-85. PubMed ID: 25449760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases.
    Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A
    J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures.
    Toussaint C; Henry O; Durocher Y
    J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells.
    Pybus LP; Dean G; West NR; Smith A; Daramola O; Field R; Wilkinson SJ; James DC
    Biotechnol Bioeng; 2014 Feb; 111(2):372-85. PubMed ID: 24081924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of active elementary flux modes in mitochondria using selectively permeabilized CHO cells.
    Nicolae A; Wahrheit J; Nonnenmacher Y; Weyler C; Heinzle E
    Metab Eng; 2015 Nov; 32():95-105. PubMed ID: 26417715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid Chromatography-Tandem Mass Spectrometry Method Revealed that Lung Cancer Cells Exhibited Distinct Metabolite Profiles upon the Treatment with Different Pyruvate Dehydrogenase Kinase Inhibitors.
    Zhang W; Hu X; Zhou W; Tam KY
    J Proteome Res; 2018 Sep; 17(9):3012-3021. PubMed ID: 30028142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors.
    Shan M; Dai D; Vudem A; Varner JD; Stroock AD
    PLoS Comput Biol; 2018 Dec; 14(12):e1006584. PubMed ID: 30532226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).
    El Sayed SM; Mahmoud AA; El Sawy SA; Abdelaal EA; Fouad AM; Yousif RS; Hashim MS; Hemdan SB; Kadry ZM; Abdelmoaty MA; Gabr AG; Omran FM; Nabo MM; Ahmed NS
    Med Hypotheses; 2013 Nov; 81(5):866-70. PubMed ID: 24071366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle.
    Komlódi T; Tretter L
    Neuropharmacology; 2017 Sep; 123():287-298. PubMed ID: 28495375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exometabolome profiling reveals activation of the carnitine buffering pathway in fed-batch cultures of CHO cells co-fed with glucose and lactic acid.
    Vappiani J; Eyster T; Orzechowski K; Ritz D; Patel P; Sévin D; Aon J
    Biotechnol Prog; 2021 Nov; 37(6):e3198. PubMed ID: 34328709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preventing pyruvate kinase muscle expression in Chinese hamster ovary cells curbs lactogenic behavior by altering glycolysis, gating pyruvate generation, and increasing pyruvate flux into the TCA cycle.
    Tang D; Sandoval W; Liu P; Lam C; Snedecor B; Misaghi S
    Biotechnol Prog; 2021 Sep; 37(5):e3193. PubMed ID: 34288605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.