These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 32298578)
1. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies. Loos PF; Scemama A; Duchemin I; Jacquemin D; Blase X J Phys Chem Lett; 2020 May; 11(9):3536-3545. PubMed ID: 32298578 [TBL] [Abstract][Full Text] [Related]
2. Potential Energy Surfaces without Unphysical Discontinuities: The Coulomb Hole Plus Screened Exchange Approach. Berger JA; Loos PF; Romaniello P J Chem Theory Comput; 2021 Jan; 17(1):191-200. PubMed ID: 33306908 [TBL] [Abstract][Full Text] [Related]
3. Modeling of excited state potential energy surfaces with the Bethe-Salpeter equation formalism: The 4-(dimethylamino)benzonitrile twist. Knysh I; Duchemin I; Blase X; Jacquemin D J Chem Phys; 2022 Nov; 157(19):194102. PubMed ID: 36414466 [TBL] [Abstract][Full Text] [Related]
4. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe-Salpeter Equation Formalism. Monino E; Loos PF J Chem Theory Comput; 2021 May; 17(5):2852-2867. PubMed ID: 33724811 [TBL] [Abstract][Full Text] [Related]
5. Scrutinizing GW-Based Methods Using the Hubbard Dimer. Di Sabatino S; Loos PF; Romaniello P Front Chem; 2021; 9():751054. PubMed ID: 34778206 [TBL] [Abstract][Full Text] [Related]
6. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD. Jacquemin D; Duchemin I; Blase X J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726 [TBL] [Abstract][Full Text] [Related]
8. Excess and excited-state dipole moments of real-life dyes: a comparison between wave-function, BSE/ Knysh I; Villalobos-Castro JDJ; Duchemin I; Blase X; Jacquemin D Phys Chem Chem Phys; 2023 Nov; 25(43):29993-30004. PubMed ID: 37905396 [TBL] [Abstract][Full Text] [Related]
9. Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers. Knysh I; Villalobos-Castro JDJ; Duchemin I; Blase X; Jacquemin D J Phys Chem Lett; 2023 Apr; 14(15):3727-3734. PubMed ID: 37042642 [TBL] [Abstract][Full Text] [Related]
10. Excited state potential energy surfaces of Knysh I; Letellier K; Duchemin I; Blase X; Jacquemin D Phys Chem Chem Phys; 2023 Mar; 25(12):8376-8385. PubMed ID: 36883347 [TBL] [Abstract][Full Text] [Related]
11. Excitation Energies from the Single-Particle Green's Function with the GW Approximation. Jin Y; Yang W J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830 [TBL] [Abstract][Full Text] [Related]
13. Helium Atom Excitations by the GW and Bethe-Salpeter Many-Body Formalism. Li J; Holzmann M; Duchemin I; Blase X; Olevano V Phys Rev Lett; 2017 Apr; 118(16):163001. PubMed ID: 28474954 [TBL] [Abstract][Full Text] [Related]
14. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies. Li J; Jin Y; Su NQ; Yang W J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294 [TBL] [Abstract][Full Text] [Related]
15. Communication: A hybrid Bethe-Salpeter/time-dependent density-functional-theory approach for excitation energies. Holzer C; Klopper W J Chem Phys; 2018 Sep; 149(10):101101. PubMed ID: 30219024 [TBL] [Abstract][Full Text] [Related]
16. Reference Energies for Intramolecular Charge-Transfer Excitations. Loos PF; Comin M; Blase X; Jacquemin D J Chem Theory Comput; 2021 Jun; 17(6):3666-3686. PubMed ID: 33955742 [TBL] [Abstract][Full Text] [Related]
17. Dynamical correction to the Bethe-Salpeter equation beyond the plasmon-pole approximation. Loos PF; Blase X J Chem Phys; 2020 Sep; 153(11):114120. PubMed ID: 32962392 [TBL] [Abstract][Full Text] [Related]
18. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules. Bruneval F; Hamed SM; Neaton JB J Chem Phys; 2015 Jun; 142(24):244101. PubMed ID: 26133404 [TBL] [Abstract][Full Text] [Related]
19. Excited-State Geometry Optimization of Small Molecules with Many-Body Green's Functions Theory. Çaylak O; Baumeier B J Chem Theory Comput; 2021 Feb; 17(2):879-888. PubMed ID: 33399447 [TBL] [Abstract][Full Text] [Related]
20. Combining Renormalized Singles Li J; Golze D; Yang W J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]