BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32298581)

  • 1. Engineering Stable
    Pham NN; Chen CY; Li H; Nguyen MTT; Nguyen PKP; Tsai SL; Chou JY; Ramli TC; Hu YC
    ACS Synth Biol; 2020 May; 9(5):1138-1149. PubMed ID: 32298581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid.
    Koopman F; Wierckx N; de Winde JH; Ruijssenaars HJ
    Bioresour Technol; 2010 Aug; 101(16):6291-6. PubMed ID: 20363622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial synthetic pathway fine-tuning and comparative transcriptomics for metabolic engineering of Raoultella ornithinolytica BF60 to efficiently synthesize 2,5-furandicarboxylic acid.
    Yuan H; Liu Y; Li J; Shin HD; Du G; Shi Z; Chen J; Liu L
    Biotechnol Bioeng; 2018 Sep; 115(9):2148-2155. PubMed ID: 29733430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green conversion of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by heterogeneous expression of 5-hydroxymethylfurfural oxidase in Pseudomonas putida S12.
    Hsu CT; Kuo YC; Liu YC; Tsai SL
    Microb Biotechnol; 2020 Jul; 13(4):1094-1102. PubMed ID: 32233071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by a Syntrophic Consortium of Engineered Synechococcus elongatus and Pseudomonas putida.
    Lin TY; Wen RC; Shen CR; Tsai SL
    Biotechnol J; 2020 Jun; 15(6):e1900357. PubMed ID: 32181597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural.
    Hossain GS; Yuan H; Li J; Shin HD; Wang M; Du G; Chen J; Liu L
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60.
    Yuan H; Li J; Shin HD; Du G; Chen J; Shi Z; Liu L
    Bioresour Technol; 2018 Jan; 247():1184-1188. PubMed ID: 28893500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing operational parameters for the enzymatic production of furandicarboxylic acid building block.
    Sánchez-Ruiz MI; Martínez AT; Serrano A
    Microb Cell Fact; 2021 Sep; 20(1):180. PubMed ID: 34503517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and Evaluation of New Hydroxymethylfurfural Oxidases for Furandicarboxylic Acid Production.
    Viñambres M; Espada M; Martínez AT; Serrano A
    Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering 5-hydroxymethylfurfural (HMF) oxidation in Pseudomonas boosts tolerance and accelerates 2,5-furandicarboxylic acid (FDCA) production.
    Lechtenberg T; Wynands B; Wierckx N
    Metab Eng; 2024 Jan; 81():262-272. PubMed ID: 38154655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14.
    Sheng Y; Tan X; Zhou X; Xu Y
    Appl Biochem Biotechnol; 2020 Oct; 192(2):455-465. PubMed ID: 32394319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in
    Yuan H; Liu Y; Lv X; Li J; Du G; Shi Z; Liu L
    J Microbiol Biotechnol; 2018 Dec; 28(12):1999-2008. PubMed ID: 30661342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Furfural and 5-Hydroxymethylfurfural (HMF) Metabolic Pathway in the Novel Isolate Pseudomonas putida ALS1267.
    Crigler J; Eiteman MA; Altman E
    Appl Biochem Biotechnol; 2020 Mar; 190(3):918-930. PubMed ID: 31605303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase.
    Viña-Gonzalez J; Martinez AT; Guallar V; Alcalde M
    Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140293. PubMed ID: 31676448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel 2,5-Furandicarboxylic Acid Biosynthesis Route from Biomass-Derived 5-Hydroxymethylfurfural Based on the Consecutive Enzyme Reactions.
    Wu S; Liu Q; Tan H; Zhang F; Yin H
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1470-1482. PubMed ID: 32125648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of MnO
    Hayashi E; Yamaguchi Y; Kamata K; Tsunoda N; Kumagai Y; Oba F; Hara M
    J Am Chem Soc; 2019 Jan; 141(2):890-900. PubMed ID: 30612429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid.
    Rajesh RO; Godan TK; Sindhu R; Pandey A; Binod P
    Bioengineered; 2020 Dec; 11(1):19-38. PubMed ID: 31880190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural.
    Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B
    ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid.
    Yi G; Teong SP; Li X; Zhang Y
    ChemSusChem; 2014 Aug; 7(8):2131-5. PubMed ID: 24889713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO
    Hayashi E; Komanoya T; Kamata K; Hara M
    ChemSusChem; 2017 Feb; 10(4):654-658. PubMed ID: 27925403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.