These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32298636)

  • 1. Target Membrane Cholesterol Modulates Single Influenza Virus Membrane Fusion Efficiency but Not Rate.
    Liu KN; Boxer SG
    Biophys J; 2020 May; 118(10):2426-2433. PubMed ID: 32298636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-virus content-mixing assay reveals cholesterol-enhanced influenza membrane fusion efficiency.
    Liu KN; Boxer SG
    Biophys J; 2021 Nov; 120(21):4832-4841. PubMed ID: 34536389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating the Influenza A Virus-Target Membrane Fusion Interface With Synthetic DNA-Lipid Receptors.
    Webster ER; Liu KN; Rawle RJ; Boxer SG
    Langmuir; 2022 Feb; 38(7):2354-2362. PubMed ID: 35143209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion.
    Desai TM; Marin M; Chin CR; Savidis G; Brass AL; Melikyan GB
    PLoS Pathog; 2014 Apr; 10(4):e1004048. PubMed ID: 24699674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influenza Hemifusion Phenotype Depends on Membrane Context: Differences in Cell-Cell and Virus-Cell Fusion.
    Zawada KE; Okamoto K; Kasson PM
    J Mol Biol; 2018 Mar; 430(5):594-601. PubMed ID: 29355500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disentangling Viral Membrane Fusion from Receptor Binding Using Synthetic DNA-Lipid Conjugates.
    Rawle RJ; Boxer SG; Kasson PM
    Biophys J; 2016 Jul; 111(1):123-31. PubMed ID: 27410740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IFITM3 blocks influenza virus entry by sorting lipids and stabilizing hemifusion.
    Klein S; Golani G; Lolicato F; Lahr C; Beyer D; Herrmann A; Wachsmuth-Melm M; Reddmann N; Brecht R; Hosseinzadeh M; Kolovou A; Makroczyova J; Peterl S; Schorb M; Schwab Y; Brügger B; Nickel W; Schwarz US; Chlanda P
    Cell Host Microbe; 2023 Apr; 31(4):616-633.e20. PubMed ID: 37003257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion.
    Gui L; Ebner JL; Mileant A; Williams JA; Lee KK
    J Virol; 2016 Aug; 90(15):6948-6962. PubMed ID: 27226364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus.
    Kühnl A; Musiol A; Heitzig N; Johnson DE; Ehrhardt C; Grewal T; Gerke V; Ludwig S; Rescher U
    mBio; 2018 Jul; 9(4):. PubMed ID: 30042202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Triggering and Chemical Control of Single-Virus Fusion within Endosomes.
    Haldar S; Okamoto K; Dunning RA; Kasson PM
    J Virol; 2020 Dec; 95(1):. PubMed ID: 33115879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphasic effects of cholesterol on influenza fusion kinetics reflect multiple mechanistic roles.
    Domanska MK; Wrona D; Kasson PM
    Biophys J; 2013 Sep; 105(6):1383-7. PubMed ID: 24047989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of fusion activity of influenza A viruses in their biological properties.
    Jakubcová L; Hollý J; Varečková E
    Acta Virol; 2016 Jun; 60(2):121-35. PubMed ID: 27265461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection.
    Li YJ; Chen CY; Yang JH; Chiu YF
    Front Immunol; 2022; 13():982264. PubMed ID: 36177026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influenza A Virus Infection Alters Lipid Packing and Surface Electrostatic Potential of the Host Plasma Membrane.
    Petrich A; Chiantia S
    Viruses; 2023 Aug; 15(9):. PubMed ID: 37766238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level.
    Otterstrom JJ; Brandenburg B; Koldijk MH; Juraszek J; Tang C; Mashaghi S; Kwaks T; Goudsmit J; Vogels R; Friesen RH; van Oijen AM
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5143-8. PubMed ID: 25404330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palmitoylation Contributes to Membrane Curvature in Influenza A Virus Assembly and Hemagglutinin-Mediated Membrane Fusion.
    Chlanda P; Mekhedov E; Waters H; Sodt A; Schwartz C; Nair V; Blank PS; Zimmerberg J
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28794042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-particle fusion of influenza viruses reveals complex interactions with target membranes.
    van der Borg G; Braddock S; Blijleven JS; van Oijen AM; Roos WH
    J Phys Condens Matter; 2018 May; 30(20):204005. PubMed ID: 29623903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IFITM proteins restrict viral membrane hemifusion.
    Li K; Markosyan RM; Zheng YM; Golfetto O; Bungart B; Li M; Ding S; He Y; Liang C; Lee JC; Gratton E; Cohen FS; Liu SL
    PLoS Pathog; 2013 Jan; 9(1):e1003124. PubMed ID: 23358889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cathepsin W Is Required for Escape of Influenza A Virus from Late Endosomes.
    Edinger TO; Pohl MO; Yángüez E; Stertz S
    mBio; 2015 Jun; 6(3):e00297. PubMed ID: 26060270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Defect in Influenza A Virus Particle Assembly Specific to Primary Human Macrophages.
    Bedi S; Noda T; Kawaoka Y; Ono A
    mBio; 2018 Oct; 9(5):. PubMed ID: 30352935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.