BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32298650)

  • 1. Gene-Specific Control of tRNA Expression by RNA Polymerase II.
    Gerber A; Ito K; Chu CS; Roeder RG
    Mol Cell; 2020 May; 78(4):765-778.e7. PubMed ID: 32298650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maf1, a new player in the regulation of human RNA polymerase III transcription.
    Reina JH; Azzouz TN; Hernandez N
    PLoS One; 2006 Dec; 1(1):e134. PubMed ID: 17205138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein.
    Graczyk D; Cieśla M; Boguta M
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):320-329. PubMed ID: 29378333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA polymerase III under control: repression and de-repression.
    Boguta M; Graczyk D
    Trends Biochem Sci; 2011 Sep; 36(9):451-6. PubMed ID: 21816617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation.
    Graczyk D; Debski J; Muszyńska G; Bretner M; Lefebvre O; Boguta M
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4926-31. PubMed ID: 21383183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery.
    Willis IM; Moir RD
    Annu Rev Biochem; 2018 Jun; 87():75-100. PubMed ID: 29328783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro.
    Cabart P; Lee J; Willis IM
    J Biol Chem; 2008 Dec; 283(52):36108-17. PubMed ID: 18974046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes.
    Leśniewska E; Boguta M
    Open Biol; 2017 Feb; 7(2):. PubMed ID: 28228471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells.
    Shor B; Wu J; Shakey Q; Toral-Barza L; Shi C; Follettie M; Yu K
    J Biol Chem; 2010 May; 285(20):15380-15392. PubMed ID: 20233713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential mode of TBP utilization in transcription of the tRNA[Ser]Sec gene and TATA-less class III genes.
    Park JM; Lee JY; Hatfield DL; Lee BJ
    Gene; 1997 Sep; 196(1-2):99-103. PubMed ID: 9322746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression.
    Rohira AD; Chen CY; Allen JR; Johnson DL
    J Biol Chem; 2013 Jun; 288(26):19288-95. PubMed ID: 23673667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. tRNA genes as transcriptional repressor elements.
    Hull MW; Erickson J; Johnston M; Engelke DR
    Mol Cell Biol; 1994 Feb; 14(2):1266-77. PubMed ID: 8289806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases.
    Johnson SS; Zhang C; Fromm J; Willis IM; Johnson DL
    Mol Cell; 2007 May; 26(3):367-79. PubMed ID: 17499043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast.
    Hamada M; Huang Y; Lowe TM; Maraia RJ
    Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1.
    Kantidakis T; Ramsbottom BA; Birch JL; Dowding SN; White RJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11823-8. PubMed ID: 20543138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.
    Arimbasseri AG; Blewett NH; Iben JR; Lamichhane TN; Cherkasova V; Hafner M; Maraia RJ
    PLoS Genet; 2015 Dec; 11(12):e1005671. PubMed ID: 26720005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maf1, a general negative regulator of RNA polymerase III in yeast.
    Boguta M
    Biochim Biophys Acta; 2013; 1829(3-4):376-84. PubMed ID: 23201230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic programming a lean phenotype by deregulation of RNA polymerase III.
    Willis IM; Moir RD; Hernandez N
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12182-12187. PubMed ID: 30429315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Cytomegalovirus Infection Elicits Global Changes in Host Transcription by RNA Polymerases I, II, and III.
    Ball CB; Parida M; Li M; Spector BM; Suarez GA; Meier JL; Price DH
    Viruses; 2022 Apr; 14(4):. PubMed ID: 35458509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.