These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 32298650)
1. Gene-Specific Control of tRNA Expression by RNA Polymerase II. Gerber A; Ito K; Chu CS; Roeder RG Mol Cell; 2020 May; 78(4):765-778.e7. PubMed ID: 32298650 [TBL] [Abstract][Full Text] [Related]
2. Maf1, a new player in the regulation of human RNA polymerase III transcription. Reina JH; Azzouz TN; Hernandez N PLoS One; 2006 Dec; 1(1):e134. PubMed ID: 17205138 [TBL] [Abstract][Full Text] [Related]
3. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. Graczyk D; Cieśla M; Boguta M Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):320-329. PubMed ID: 29378333 [TBL] [Abstract][Full Text] [Related]
4. RNA polymerase III under control: repression and de-repression. Boguta M; Graczyk D Trends Biochem Sci; 2011 Sep; 36(9):451-6. PubMed ID: 21816617 [TBL] [Abstract][Full Text] [Related]
5. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Graczyk D; Debski J; Muszyńska G; Bretner M; Lefebvre O; Boguta M Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4926-31. PubMed ID: 21383183 [TBL] [Abstract][Full Text] [Related]
6. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae. Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116 [TBL] [Abstract][Full Text] [Related]
7. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery. Willis IM; Moir RD Annu Rev Biochem; 2018 Jun; 87():75-100. PubMed ID: 29328783 [TBL] [Abstract][Full Text] [Related]
8. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. Cabart P; Lee J; Willis IM J Biol Chem; 2008 Dec; 283(52):36108-17. PubMed ID: 18974046 [TBL] [Abstract][Full Text] [Related]
9. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Leśniewska E; Boguta M Open Biol; 2017 Feb; 7(2):. PubMed ID: 28228471 [TBL] [Abstract][Full Text] [Related]
10. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. Shor B; Wu J; Shakey Q; Toral-Barza L; Shi C; Follettie M; Yu K J Biol Chem; 2010 May; 285(20):15380-15392. PubMed ID: 20233713 [TBL] [Abstract][Full Text] [Related]
11. Differential mode of TBP utilization in transcription of the tRNA[Ser]Sec gene and TATA-less class III genes. Park JM; Lee JY; Hatfield DL; Lee BJ Gene; 1997 Sep; 196(1-2):99-103. PubMed ID: 9322746 [TBL] [Abstract][Full Text] [Related]
12. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression. Rohira AD; Chen CY; Allen JR; Johnson DL J Biol Chem; 2013 Jun; 288(26):19288-95. PubMed ID: 23673667 [TBL] [Abstract][Full Text] [Related]
13. tRNA genes as transcriptional repressor elements. Hull MW; Erickson J; Johnston M; Engelke DR Mol Cell Biol; 1994 Feb; 14(2):1266-77. PubMed ID: 8289806 [TBL] [Abstract][Full Text] [Related]
14. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Johnson SS; Zhang C; Fromm J; Willis IM; Johnson DL Mol Cell; 2007 May; 26(3):367-79. PubMed ID: 17499043 [TBL] [Abstract][Full Text] [Related]
15. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Hamada M; Huang Y; Lowe TM; Maraia RJ Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871 [TBL] [Abstract][Full Text] [Related]
16. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Kantidakis T; Ramsbottom BA; Birch JL; Dowding SN; White RJ Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11823-8. PubMed ID: 20543138 [TBL] [Abstract][Full Text] [Related]
17. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification. Arimbasseri AG; Blewett NH; Iben JR; Lamichhane TN; Cherkasova V; Hafner M; Maraia RJ PLoS Genet; 2015 Dec; 11(12):e1005671. PubMed ID: 26720005 [TBL] [Abstract][Full Text] [Related]
18. Maf1, a general negative regulator of RNA polymerase III in yeast. Boguta M Biochim Biophys Acta; 2013; 1829(3-4):376-84. PubMed ID: 23201230 [TBL] [Abstract][Full Text] [Related]
19. Metabolic programming a lean phenotype by deregulation of RNA polymerase III. Willis IM; Moir RD; Hernandez N Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12182-12187. PubMed ID: 30429315 [TBL] [Abstract][Full Text] [Related]
20. Human Cytomegalovirus Infection Elicits Global Changes in Host Transcription by RNA Polymerases I, II, and III. Ball CB; Parida M; Li M; Spector BM; Suarez GA; Meier JL; Price DH Viruses; 2022 Apr; 14(4):. PubMed ID: 35458509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]