BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32298741)

  • 1. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy.
    Saravanan S; Vimalraj S; Pavani K; Nikarika R; Sumantran VN
    Life Sci; 2020 Jul; 252():117670. PubMed ID: 32298741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide signaling regulates tumor-induced intussusceptive-like angiogenesis.
    Vimalraj S; Bhuvaneswari S; Lakshmikirupa S; Jyothsna G; Chatterjee S
    Microvasc Res; 2018 Sep; 119():47-59. PubMed ID: 29649432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escape mechanisms after antiangiogenic treatment, or why are the tumors growing again?
    Hlushchuk R; Makanya AN; Djonov V
    Int J Dev Biol; 2011; 55(4-5):563-7. PubMed ID: 21858777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models.
    Vimalraj S; Pichu S; Pankajam T; Dharanibalan K; Djonov V; Chatterjee S
    Nitric Oxide; 2019 Jan; 82():48-58. PubMed ID: 30439561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies.
    Shojaei F; Ferrara N
    Drug Resist Updat; 2008 Dec; 11(6):219-30. PubMed ID: 18948057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor angiogenesis and anti-angiogenic therapies.
    Shahneh FZ; Baradaran B; Zamani F; Aghebati-Maleki L
    Hum Antibodies; 2013; 22(1-2):15-9. PubMed ID: 24284305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist.
    Alessi P; Leali D; Camozzi M; Cantelmo A; Albini A; Presta M
    Eur Cytokine Netw; 2009 Dec; 20(4):225-34. PubMed ID: 20167562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redundant angiogenic signaling and tumor drug resistance.
    Gacche RN; Assaraf YG
    Drug Resist Updat; 2018 Jan; 36():47-76. PubMed ID: 29499837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Effects of Anti-Angiogenic Therapies on Tumor Cells: VEGF Signaling.
    Simon T; Gagliano T; Giamas G
    Trends Mol Med; 2017 Mar; 23(3):282-292. PubMed ID: 28162910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of tumor angiogenesis as a therapeutic target in colorectal cancer.
    Battaglin F; Puccini A; Intini R; Schirripa M; Ferro A; Bergamo F; Lonardi S; Zagonel V; Lenz HJ; Loupakis F
    Expert Rev Anticancer Ther; 2018 Mar; 18(3):251-266. PubMed ID: 29338550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of angiogenesis and the angiogenesis/invasion shift.
    Bikfalvi A; Moenner M; Javerzat S; North S; Hagedorn M
    Biochem Soc Trans; 2011 Dec; 39(6):1560-4. PubMed ID: 22103487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation.
    Qian CN; Tan MH; Yang JP; Cao Y
    Chin J Cancer; 2016 Jan; 35():10. PubMed ID: 26747273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular endothelial growth factor and vascular endothelial growth factor receptor inhibitors as anti-angiogenic agents in cancer therapy.
    Veeravagu A; Hsu AR; Cai W; Hou LC; Tse VC; Chen X
    Recent Pat Anticancer Drug Discov; 2007 Jan; 2(1):59-71. PubMed ID: 18221053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-Angiogenics: Current Situation and Future Perspectives.
    Zirlik K; Duyster J
    Oncol Res Treat; 2018; 41(4):166-171. PubMed ID: 29562226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiogenesis inhibitors. Drug selectivity and target specificity.
    Kesisis G; Broxterman H; Giaccone G
    Curr Pharm Des; 2007; 13(27):2795-809. PubMed ID: 17897024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intussusceptive microvascular growth in tumors.
    Ribatti D; Djonov V
    Cancer Lett; 2012 Mar; 316(2):126-31. PubMed ID: 22197620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor.
    Zhao Y; Adjei AA
    Oncologist; 2015 Jun; 20(6):660-73. PubMed ID: 26001391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends and Challenges in Tumor Anti-Angiogenic Therapies.
    Jászai J; Schmidt MHH
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis.
    Bousseau S; Vergori L; Soleti R; Lenaers G; Martinez MC; Andriantsitohaina R
    Pharmacol Ther; 2018 Nov; 191():92-122. PubMed ID: 29909237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy.
    Shinkaruk S; Bayle M; Laïn G; Déléris G
    Curr Med Chem Anticancer Agents; 2003 Mar; 3(2):95-117. PubMed ID: 12678905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.