These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 32298847)
1. Neural negated entity recognition in Spanish electronic health records. Santiso S; Pérez A; Casillas A; Oronoz M J Biomed Inform; 2020 May; 105():103419. PubMed ID: 32298847 [TBL] [Abstract][Full Text] [Related]
2. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction. Fabregat H; Duque A; Martinez-Romo J; Araujo L J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608 [TBL] [Abstract][Full Text] [Related]
3. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches. Weegar R; Pérez A; Casillas A; Oronoz M BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 7):274. PubMed ID: 31865900 [TBL] [Abstract][Full Text] [Related]
4. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records. Cai X; Dong S; Hu J BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622 [TBL] [Abstract][Full Text] [Related]
5. Boosting ICD multi-label classification of health records with contextual embeddings and label-granularity. Blanco A; Perez-de-Viñaspre O; Pérez A; Casillas A Comput Methods Programs Biomed; 2020 May; 188():105264. PubMed ID: 31851906 [TBL] [Abstract][Full Text] [Related]
6. The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study. Rivera Zavala R; Martinez P JMIR Med Inform; 2020 Dec; 8(12):e18953. PubMed ID: 33270027 [TBL] [Abstract][Full Text] [Related]
7. Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery. Santiso S; Perez A; Casillas A IEEE J Biomed Health Inform; 2019 Sep; 23(5):2148-2155. PubMed ID: 30403644 [TBL] [Abstract][Full Text] [Related]
8. A two-stage deep learning approach for extracting entities and relationships from medical texts. Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016 [TBL] [Abstract][Full Text] [Related]
9. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
10. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
11. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding. Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of clinical named entity recognition methods for Serbian electronic health records. Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828 [TBL] [Abstract][Full Text] [Related]
13. Medical Named Entity Extraction from Chinese Resident Admit Notes Using Character and Word Attention-Enhanced Neural Network. Gao Y; Wang Y; Wang P; Gu L Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32131522 [TBL] [Abstract][Full Text] [Related]
14. Korean clinical entity recognition from diagnosis text using BERT. Kim YM; Lee TH BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724 [TBL] [Abstract][Full Text] [Related]
15. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records. Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540 [TBL] [Abstract][Full Text] [Related]
16. Measuring the effect of different types of unsupervised word representations on Medical Named Entity Recognition. Casillas A; Ezeiza N; Goenaga I; Pérez A; Soto X Int J Med Inform; 2019 Sep; 129():100-106. PubMed ID: 31445243 [TBL] [Abstract][Full Text] [Related]
17. Negation recognition in clinical natural language processing using a combination of the NegEx algorithm and a convolutional neural network. Argüello-González G; Aquino-Esperanza J; Salvador D; Bretón-Romero R; Del Río-Bermudez C; Tello J; Menke S BMC Med Inform Decis Mak; 2023 Oct; 23(1):216. PubMed ID: 37833661 [TBL] [Abstract][Full Text] [Related]
18. Comparing Different Methods for Named Entity Recognition in Portuguese Neurology Text. Lopes F; Teixeira C; Gonçalo Oliveira H J Med Syst; 2020 Feb; 44(4):77. PubMed ID: 32112285 [TBL] [Abstract][Full Text] [Related]
19. Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition. Wang Q; Zhou Y; Ruan T; Gao D; Xia Y; He P J Biomed Inform; 2019 Apr; 92():103133. PubMed ID: 30818005 [TBL] [Abstract][Full Text] [Related]
20. De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models. Tang B; Jiang D; Chen Q; Wang X; Yan J; Shen Y AMIA Annu Symp Proc; 2019; 2019():857-863. PubMed ID: 32308882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]