These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 32298847)
21. Exploring Negated Entites for Named Entity Recognition in Italian Lung Cancer Clinical Reports. Paolo D; Bria A; Greco C; Russano M; Ramella S; Soda P; Sicilia R Stud Health Technol Inform; 2024 May; 314():98-102. PubMed ID: 38785011 [TBL] [Abstract][Full Text] [Related]
22. Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF. An Y; Xia X; Chen X; Wu FX; Wang J Artif Intell Med; 2022 May; 127():102282. PubMed ID: 35430042 [TBL] [Abstract][Full Text] [Related]
23. Adverse drug events and medication relation extraction in electronic health records with ensemble deep learning methods. Christopoulou F; Tran TT; Sahu SK; Miwa M; Ananiadou S J Am Med Inform Assoc; 2020 Jan; 27(1):39-46. PubMed ID: 31390003 [TBL] [Abstract][Full Text] [Related]
24. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
25. Integrating Language Model and Reading Control Gate in BLSTM-CRF for Biomedical Named Entity Recognition. Li L; Jiang Y IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):841-846. PubMed ID: 30183643 [TBL] [Abstract][Full Text] [Related]
26. Medical Knowledge Extraction and Analysis from Electronic Medical Records Using Deep Learning. Li PL; Yuan ZM; Tu WN; Yu K; Lu DX Chin Med Sci J; 2019 Jun; 34(2):133-139. PubMed ID: 31315754 [TBL] [Abstract][Full Text] [Related]
27. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning. Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641 [TBL] [Abstract][Full Text] [Related]
28. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods. Zhang Y; Wang X; Hou Z; Li J JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093 [TBL] [Abstract][Full Text] [Related]
29. Clinical Named Entity Recognition Using Deep Learning Models. Wu Y; Jiang M; Xu J; Zhi D; Xu H AMIA Annu Symp Proc; 2017; 2017():1812-1819. PubMed ID: 29854252 [TBL] [Abstract][Full Text] [Related]
30. De-identifying free text of Japanese electronic health records. Kajiyama K; Horiguchi H; Okumura T; Morita M; Kano Y J Biomed Semantics; 2020 Sep; 11(1):11. PubMed ID: 32958039 [TBL] [Abstract][Full Text] [Related]
31. Extracting Drug Names and Associated Attributes From Discharge Summaries: Text Mining Study. Alfattni G; Belousov M; Peek N; Nenadic G JMIR Med Inform; 2021 May; 9(5):e24678. PubMed ID: 33949962 [TBL] [Abstract][Full Text] [Related]
32. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training. Chen Y; Zhou C; Li T; Wu H; Zhao X; Ye K; Liao J J Biomed Inform; 2019 Aug; 96():103252. PubMed ID: 31323311 [TBL] [Abstract][Full Text] [Related]
33. Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF. Tang B; Wang X; Yan J; Chen Q BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):74. PubMed ID: 30943972 [TBL] [Abstract][Full Text] [Related]
34. A multi-layer soft lattice based model for Chinese clinical named entity recognition. Guo S; Yang W; Han L; Song X; Wang G BMC Med Inform Decis Mak; 2022 Jul; 22(1):201. PubMed ID: 35908055 [TBL] [Abstract][Full Text] [Related]
35. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization. Rivera-Zavala RM; Martínez P BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703 [TBL] [Abstract][Full Text] [Related]
36. Named entity recognition in electronic health records using transfer learning bootstrapped Neural Networks. Gligic L; Kormilitzin A; Goldberg P; Nevado-Holgado A Neural Netw; 2020 Jan; 121():132-139. PubMed ID: 31541881 [TBL] [Abstract][Full Text] [Related]
37. Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach. Solarte Pabón O; Montenegro O; Torrente M; Rodríguez González A; Provencio M; Menasalvas E PeerJ Comput Sci; 2022; 8():e913. PubMed ID: 35494817 [TBL] [Abstract][Full Text] [Related]
38. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features. Tang B; Cao H; Wu Y; Jiang M; Xu H BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040 [TBL] [Abstract][Full Text] [Related]
39. Applying a deep learning-based sequence labeling approach to detect attributes of medical concepts in clinical text. Xu J; Li Z; Wei Q; Wu Y; Xiang Y; Lee HJ; Zhang Y; Wu S; Xu H BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):236. PubMed ID: 31801529 [TBL] [Abstract][Full Text] [Related]
40. A study of deep learning approaches for medication and adverse drug event extraction from clinical text. Wei Q; Ji Z; Li Z; Du J; Wang J; Xu J; Xiang Y; Tiryaki F; Wu S; Zhang Y; Tao C; Xu H J Am Med Inform Assoc; 2020 Jan; 27(1):13-21. PubMed ID: 31135882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]