These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32298886)

  • 21. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species.
    Bison M; Yoccoz NG; Carlson B; Klein G; Laigle I; Van Reeth C; Asse D; Delestrade A
    Ecol Evol; 2020 Sep; 10(18):10219-10229. PubMed ID: 33005377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland.
    Cong N; Shen M; Yang W; Yang Z; Zhang G; Piao S
    Int J Biometeorol; 2017 Aug; 61(8):1433-1444. PubMed ID: 28247125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flowering Phenology Adjustment and Flower Longevity in a South American Alpine Species.
    Arroyo MTK; Tamburrino Í; Pliscoff P; Robles V; Colldecarrera M; Guerrero PC
    Plants (Basel); 2021 Feb; 10(3):. PubMed ID: 33671053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability and evolution of global land surface phenology over the past three decades (1982-2012).
    Garonna I; de Jong R; Schaepman ME
    Glob Chang Biol; 2016 Apr; 22(4):1456-68. PubMed ID: 26924776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.
    Ernakovich JG; Hopping KA; Berdanier AB; Simpson RT; Kachergis EJ; Steltzer H; Wallenstein MD
    Glob Chang Biol; 2014 Oct; 20(10):3256-69. PubMed ID: 24599697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011).
    Garonna I; de Jong R; de Wit AJ; Mücher CA; Schmid B; Schaepman ME
    Glob Chang Biol; 2014 Nov; 20(11):3457-70. PubMed ID: 24797086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities.
    Carlson BZ; Choler P; Renaud J; Dedieu JP; Thuiller W
    Ann Bot; 2015 Nov; 116(6):1023-34. PubMed ID: 25851138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced spatiotemporal heterogeneity and the climatic and biotic controls of autumn phenology in northern grasslands.
    Ren S; Peichl M
    Sci Total Environ; 2021 Sep; 788():147806. PubMed ID: 34029811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Snowbeds are more affected than other subalpine-alpine plant communities by climate change in the Swiss Alps.
    Matteodo M; Ammann K; Verrecchia EP; Vittoz P
    Ecol Evol; 2016 Oct; 6(19):6969-6982. PubMed ID: 28725374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-year data from satellite- and ground-based sensors show details and scale matter in assessing climate's effects on wetland surface water, amphibians, and landscape conditions.
    Sadinski W; Gallant AL; Roth M; Brown J; Senay G; Brininger W; Jones PM; Stoker J
    PLoS One; 2018; 13(9):e0201951. PubMed ID: 30192764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau.
    Li L; Zhang Y; Wu J; Li S; Zhang B; Zu J; Zhang H; Ding M; Paudel B
    Sci Total Environ; 2019 Aug; 678():21-29. PubMed ID: 31075588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001-2014.
    Chen X; Liang S; Cao Y; He T; Wang D
    Sci Rep; 2015 Nov; 5():16820. PubMed ID: 26581632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of ski piste management on mountain grassland ecosystems in the Southern Alps.
    Casagrande Bacchiocchi S; Zerbe S; Cavieres LA; Wellstein C
    Sci Total Environ; 2019 May; 665():959-967. PubMed ID: 30893754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.
    Zhu W; Chen G; Jiang N; Liu J; Mou M
    PLoS One; 2013; 8(12):e84990. PubMed ID: 24386441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.
    Shen M; Piao S; Chen X; An S; Fu YH; Wang S; Cong N; Janssens IA
    Glob Chang Biol; 2016 Sep; 22(9):3057-66. PubMed ID: 27103613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran.
    Noroozi J; Körner C
    Alp Bot; 2018; 128(1):1-11. PubMed ID: 29576762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore.
    Rickbeil GJM; Coops NC; Berman EE; McClelland CJR; Bolton DK; Stenhouse GB
    Glob Chang Biol; 2020 Nov; 26(11):6266-6275. PubMed ID: 32722880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Land surface phenology: What do we really 'see' from space?
    Helman D
    Sci Total Environ; 2018 Mar; 618():665-673. PubMed ID: 29037474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.
    Jones MO; Kimball JS; Small EE; Larson KM
    Int J Biometeorol; 2014 Aug; 58(6):1305-15. PubMed ID: 24005849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.