These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 32298892)
21. Late autumn warming can both delay and advance spring budburst through contrasting effects on bud dormancy depth in Fagus sylvatica L. Garrigues R; Dox I; Flores O; Marchand LJ; Malyshev AV; Beemster G; AbdElgawad H; Janssens I; Asard H; Campioli M Tree Physiol; 2023 Oct; 43(10):1718-1730. PubMed ID: 37364048 [TBL] [Abstract][Full Text] [Related]
23. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Wang H; Wu C; Ciais P; Peñuelas J; Dai J; Fu Y; Ge Q Nat Commun; 2020 Oct; 11(1):4945. PubMed ID: 33009378 [TBL] [Abstract][Full Text] [Related]
24. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Ford KR; Harrington CA; Bansal S; Gould PJ; St Clair JB Glob Chang Biol; 2016 Nov; 22(11):3712-3723. PubMed ID: 27104650 [TBL] [Abstract][Full Text] [Related]
25. Climate warming shifts the time interval between flowering and leaf unfolding depending on the warming period. Wang S; Wu Z; Gong Y; Wang S; Zhang W; Zhang S; De Boeck HJ; Fu YH Sci China Life Sci; 2022 Nov; 65(11):2316-2324. PubMed ID: 35474153 [TBL] [Abstract][Full Text] [Related]
26. Quantifying the importance of day length in process-based models for the prediction of temperate spring flowering phenology. Kim S; Kim TK; Yoon S; Jang K; Chun JH; Won M; Lim JH; Kim HS Sci Total Environ; 2022 Oct; 843():156780. PubMed ID: 35724787 [TBL] [Abstract][Full Text] [Related]
27. Poleward shifts in the maximum of spring phenological responsiveness of Ginkgo biloba to temperature in China. Wu Z; Fu YH; Crowther TW; Wang S; Gong Y; Zhang J; Zhao YP; Janssens I; Penuelas J; Zohner CM New Phytol; 2023 Nov; 240(4):1421-1432. PubMed ID: 37632265 [TBL] [Abstract][Full Text] [Related]
28. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Harrington CA; Gould PJ Front Plant Sci; 2015; 6():120. PubMed ID: 25784922 [TBL] [Abstract][Full Text] [Related]
29. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. Flynn DFB; Wolkovich EM New Phytol; 2018 Sep; 219(4):1353-1362. PubMed ID: 29870050 [TBL] [Abstract][Full Text] [Related]
30. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Chen L; Huang JG; Ma Q; Hänninen H; Rossi S; Piao S; Bergeron Y Glob Chang Biol; 2018 Sep; 24(9):3969-3975. PubMed ID: 29697173 [TBL] [Abstract][Full Text] [Related]
31. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Chen L; Huang JG; Ma Q; Hänninen H; Tremblay F; Bergeron Y Glob Chang Biol; 2019 Mar; 25(3):997-1004. PubMed ID: 30358002 [TBL] [Abstract][Full Text] [Related]
32. Stronger Spring Phenological Advance in Future Warming Scenarios for Temperate Species With a Lower Chilling Sensitivity. Hu Z; Wang H; Dai J; Ge Q; Lin S Front Plant Sci; 2022; 13():830573. PubMed ID: 35665167 [TBL] [Abstract][Full Text] [Related]
33. Latitudinal clines in bud flush phenology reflect genetic variation in chilling requirements in balsam poplar, Populus balsamifera. Thibault E; Soolanayakanahally R; Keller SR Am J Bot; 2020 Nov; 107(11):1597-1605. PubMed ID: 33225462 [TBL] [Abstract][Full Text] [Related]
34. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Delpierre N; Lireux S; Hartig F; Camarero JJ; Cheaib A; Čufar K; Cuny H; Deslauriers A; Fonti P; Gričar J; Huang JG; Krause C; Liu G; de Luis M; Mäkinen H; Del Castillo EM; Morin H; Nöjd P; Oberhuber W; Prislan P; Rossi S; Saderi SM; Treml V; Vavrick H; Rathgeber CBK Glob Chang Biol; 2019 Mar; 25(3):1089-1105. PubMed ID: 30536724 [TBL] [Abstract][Full Text] [Related]
35. Winter chilling speeds spring development of temperate butterflies. Stålhandske S; Gotthard K; Leimar O J Anim Ecol; 2017 Jul; 86(4):718-729. PubMed ID: 28466477 [TBL] [Abstract][Full Text] [Related]
36. Declining global warming effects on the phenology of spring leaf unfolding. Fu YH; Zhao H; Piao S; Peaucelle M; Peng S; Zhou G; Ciais P; Huang M; Menzel A; Peñuelas J; Song Y; Vitasse Y; Zeng Z; Janssens IA Nature; 2015 Oct; 526(7571):104-7. PubMed ID: 26416746 [TBL] [Abstract][Full Text] [Related]
37. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Marchin RM; Salk CF; Hoffmann WA; Dunn RR Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981 [TBL] [Abstract][Full Text] [Related]
38. Influence of winter precipitation on spring phenology in boreal forests. Yun J; Jeong SJ; Ho CH; Park CE; Park H; Kim J Glob Chang Biol; 2018 Nov; 24(11):5176-5187. PubMed ID: 30067888 [TBL] [Abstract][Full Text] [Related]
39. Identification of chilling and heat requirements of cherry trees--a statistical approach. Luedeling E; Kunz A; Blanke MM Int J Biometeorol; 2013 Sep; 57(5):679-89. PubMed ID: 23053065 [TBL] [Abstract][Full Text] [Related]
40. Effectiveness of winter temperatures for satisfying chilling requirements for reproductive budburst of red alder ( Prevéy JS; Harrington CA PeerJ; 2018; 6():e5221. PubMed ID: 30280010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]