BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32298976)

  • 41. Enhanced Electromagnetic Wave Absorption of SiOC/Porous Carbon Composites.
    Yang W; Li L; Hou Y; Liu Y; Xiao X
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lightweight Co
    An B; Wu M; Yang X; Man Z; Feng C; Liang X
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 1D Electromagnetic-Gradient Hierarchical Carbon Microtube via Coaxial Electrospinning Design for Enhanced Microwave Absorption.
    Jin C; Wu Z; Zhang R; Qian X; Xu H; Che R
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15939-15949. PubMed ID: 33779132
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Yang G; Wen B; Wang Y; Zhou X; Liu X; Ding S
    Nanotechnology; 2023 Feb; 34(18):. PubMed ID: 36701798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Controllable Architecture of ZnO/FeNi Composites Derived from Trimetallic ZnFeNi Layered Double Hydroxides for High-Performance Electromagnetic Wave Absorbers.
    Gan F; Rao Q; Deng J; Cheng L; Zhong Y; Lu Z; Wang F; Wang J; Zhou H; Rao G
    Small; 2023 Jul; 19(27):e2300257. PubMed ID: 36967536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption.
    Qiu Y; Wen B; Yang H; Lin Y; Cheng Y; Jin L
    J Colloid Interface Sci; 2021 Nov; 602():242-250. PubMed ID: 34119761
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Performance Electromagnetic Wave Absorbing CNT/SiC
    Xu J; Xia L; Luo J; Lu S; Huang X; Zhong B; Zhang T; Wen G; Wu X; Xiong L; Wang G
    ACS Appl Mater Interfaces; 2020 May; 12(18):20775-20784. PubMed ID: 32282186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controlling the heterogeneous interfaces of S, Co co-doped porous carbon nanosheets for enhancing the electromagnetic wave absorption.
    Wen B; Yang H; Lin Y; Ma L; Qiu Y; Hu F
    J Colloid Interface Sci; 2021 Mar; 586():208-218. PubMed ID: 33162048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-Situ Fabrication of Sustainable-N-Doped-Carbon-Nanotube-Encapsulated CoNi Heterogenous Nanocomposites for High-Efficiency Electromagnetic Wave Absorption.
    Zhang X; Tian X; Qiao J; Fang X; Liu K; Liu C; Lin J; Li L; Liu W; Liu J; Zeng Z
    Small; 2023 Oct; 19(40):e2302686. PubMed ID: 37208798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-layered nano-hollow spheres for efficient electromagnetic wave absorption.
    Gorai A; Mandal D; Mandal K
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34086606
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Balancing Between Polarization and Conduction Loss toward Strong Electromagnetic Wave Absorption of Hard Carbon Particles with Morphology Heterogeneity.
    Nan H; Luo F; Jia H; Deng H; Qing Y; Huang Z; Wang C; Chen Q
    ACS Appl Mater Interfaces; 2022 May; 14(17):19836-19846. PubMed ID: 35465665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduced Graphene Oxide Modified Nitrogen-Doped Chitosan Carbon Fiber with Excellent Electromagnetic Wave Absorbing Performance.
    Guo M; Lin M; Xu J; Pan Y; Ma C; Chen G
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607120
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-performance electromagnetic wave absorption of NiCoFe/N-doped carbon composites with a Prussian blue analog (PBA) core at 2-18 GHz.
    Wang Y; Pang Z; Xu H; Li C; Zhou W; Jiang X; Yu L
    J Colloid Interface Sci; 2022 Aug; 620():107-118. PubMed ID: 35421747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses.
    Wu N; Lv H; Liu J; Liu Y; Wang S; Liu W
    Phys Chem Chem Phys; 2016 Nov; 18(46):31542-31550. PubMed ID: 27831579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lightweight TiO
    He M; Liao Q; Zhou Y; Song Z; Wang Y; Feng S; Xu R; Peng H; Chen X; Kang Y
    Langmuir; 2022 Jan; 38(3):945-956. PubMed ID: 35019654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Easy Method of Synthesis Co
    Bao W; Chen C; Si Z
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption.
    Qiu Y; Yang H; Ma L; Lin Y; Zong H; Wen B; Bai X; Wang M
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):783-793. PubMed ID: 32814198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultra-High Electromagnetic Absorption Property of One-Dimensional Carbon-Supported Ni/Mo
    Gao S; Feng J; Wang GS; Liang BL
    Front Chem; 2019; 7():427. PubMed ID: 31281808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method.
    Liu PB; Huang Y; Sun X
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12355-60. PubMed ID: 24218981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and properties of CF-Fe
    Ye W; Sun Q; Long X; Cai Y
    RSC Adv; 2020 Mar; 10(19):11121-11131. PubMed ID: 35495301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.