BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32299253)

  • 1. Immobilized microbial nanoparticles for biosorption.
    Giese EC; Silva DDV; Costa AFM; Almeida SGC; Dussán KJ
    Crit Rev Biotechnol; 2020 Aug; 40(5):653-666. PubMed ID: 32299253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosorbents for heavy metals removal and their future.
    Wang J; Chen C
    Biotechnol Adv; 2009; 27(2):195-226. PubMed ID: 19103274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilized microbial biosorbents for heavy metals removal.
    Velkova Z; Kirova G; Stoytcheva M; Kostadinova S; Todorova K; Gochev V
    Eng Life Sci; 2018 Dec; 18(12):871-881. PubMed ID: 32624881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents.
    de Freitas GR; da Silva MGC; Vieira MGA
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19097-19118. PubMed ID: 31104247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized enzymes and cell systems: an approach to the removal of phenol and the challenges to incorporate nanoparticle-based technology.
    Escobedo-Morales G; Hernández-Beltrán JU; Nagamani Balagurusamy ; Hernández-Almanza AY; Luévanos-Escareño MP
    World J Microbiol Biotechnol; 2022 Jan; 38(3):42. PubMed ID: 35043353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.
    Ahmad A; Bhat AH; Buang A
    Environ Technol; 2019 Jun; 40(14):1793-1809. PubMed ID: 29345546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations.
    Ramesh B; Saravanan A; Senthil Kumar P; Yaashikaa PR; Thamarai P; Shaji A; Rangasamy G
    Environ Pollut; 2023 Jun; 327():121572. PubMed ID: 37028793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review.
    Mazur LP; Cechinel MAP; de Souza SMAGU; Boaventura RAR; Vilar VJP
    J Environ Manage; 2018 Oct; 223():215-253. PubMed ID: 29933140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation.
    Hansda A; Kumar V; Anshumali
    World J Microbiol Biotechnol; 2016 Oct; 32(10):170. PubMed ID: 27565780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial biosorbents and biosorption.
    Vijayaraghavan K; Yun YS
    Biotechnol Adv; 2008; 26(3):266-91. PubMed ID: 18353595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    ZÁrate A; Florez J; Angulo E; Varela-Prieto L; Infante C; Barrios F; Barraza B; Gallardo DI; Valdés J
    J Microbiol Biotechnol; 2017 Jun; 27(6):1138-1149. PubMed ID: 28301920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of Basic Blue 7 by fungal cells immobilized on the green-type biomatrix of Phragmites australis spongy tissue.
    Akar T; Uzun C; Çelik S; Akar ST
    Int J Phytoremediation; 2018 Jan; 20(2):145-152. PubMed ID: 28613136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment.
    Saravanan A; Kumar PS; Hemavathy RV; Jeevanantham S; Harikumar P; Priyanka G; Devakirubai DRA
    Sci Total Environ; 2022 Mar; 812():152456. PubMed ID: 34952073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review.
    Li R; Wang B; Niu A; Cheng N; Chen M; Zhang X; Yu Z; Wang S
    Sci Total Environ; 2022 Sep; 837():155563. PubMed ID: 35504384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants.
    Rangabhashiyam S; Suganya E; Selvaraju N; Varghese LA
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1669-89. PubMed ID: 24436063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook.
    Yaashikaa PR; Kumar PS; Saravanan A; Vo DN
    J Hazard Mater; 2021 Oct; 420():126596. PubMed ID: 34274808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater.
    Liu D; Yang X; Zhang L; Tang Y; He H; Liang M; Tu Z; Zhu H
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic micro-macro biocatalysts applied to industrial bioprocesses.
    Del Arco J; Alcántara AR; Fernández-Lafuente R; Fernández-Lucas J
    Bioresour Technol; 2021 Feb; 322():124547. PubMed ID: 33352394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial biomass: an economical alternative for removal of heavy metals from waste water.
    Gupta R; Mohapatra H
    Indian J Exp Biol; 2003 Sep; 41(9):945-66. PubMed ID: 15242288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.