BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32299343)

  • 1. Unblended disjoint tree merging using GTM improves species tree estimation.
    Smirnov V; Warnow T
    BMC Genomics; 2020 Apr; 21(Suppl 2):235. PubMed ID: 32299343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Constrained-INC for Large-Scale Gene Tree and Species Tree Estimation.
    Le T; Sy A; Molloy EK; Zhang Q; Rao S; Warnow T
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):2-15. PubMed ID: 32750844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistically consistent divide-and-conquer pipelines for phylogeny estimation using NJMerge.
    Molloy EK; Warnow T
    Algorithms Mol Biol; 2019; 14():14. PubMed ID: 31360216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVDquest: Improving SVDquartets species tree estimation using exact optimization within a constrained search space.
    Vachaspati P; Warnow T
    Mol Phylogenet Evol; 2018 Jul; 124():122-136. PubMed ID: 29530498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragmentary Gene Sequences Negatively Impact Gene Tree and Species Tree Reconstruction.
    Sayyari E; Whitfield JB; Mirarab S
    Mol Biol Evol; 2017 Dec; 34(12):3279-3291. PubMed ID: 29029241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BBCA: Improving the scalability of *BEAST using random binning.
    Zimmermann T; Mirarab S; Warnow T
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S11. PubMed ID: 25572469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ASTRID: Accurate Species TRees from Internode Distances.
    Vachaspati P; Warnow T
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S3. PubMed ID: 26449326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STELAR: a statistically consistent coalescent-based species tree estimation method by maximizing triplet consistency.
    Islam M; Sarker K; Das T; Reaz R; Bayzid MS
    BMC Genomics; 2020 Feb; 21(1):136. PubMed ID: 32039704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The performance of coalescent-based species tree estimation methods under models of missing data.
    Nute M; Chou J; Molloy EK; Warnow T
    BMC Genomics; 2018 May; 19(Suppl 5):286. PubMed ID: 29745854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIESTA: enhancing searches for optimal supertrees and species trees.
    Vachaspati P; Warnow T
    BMC Genomics; 2018 May; 19(Suppl 5):252. PubMed ID: 29745851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To Include or Not to Include: The Impact of Gene Filtering on Species Tree Estimation Methods.
    Molloy EK; Warnow T
    Syst Biol; 2018 Mar; 67(2):285-303. PubMed ID: 29029338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new fast method for inferring multiple consensus trees using k-medoids.
    Tahiri N; Willems M; Makarenkov V
    BMC Evol Biol; 2018 Apr; 18(1):48. PubMed ID: 29621975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forcing external constraints on tree inference using ASTRAL.
    Rabiee M; Mirarab S
    BMC Genomics; 2020 Apr; 21(Suppl 2):218. PubMed ID: 32299337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes.
    Ruane S; Raxworthy CJ; Lemmon AR; Lemmon EM; Burbrink FT
    BMC Evol Biol; 2015 Oct; 15():221. PubMed ID: 26459325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum likelihood estimates of species trees: how accuracy of phylogenetic inference depends upon the divergence history and sampling design.
    McCormack JE; Huang H; Knowles LL
    Syst Biol; 2009 Oct; 58(5):501-8. PubMed ID: 20525604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disk covering methods improve phylogenomic analyses.
    Bayzid MS; Hunt T; Warnow T
    BMC Genomics; 2014; 15 Suppl 6(Suppl 6):S7. PubMed ID: 25572610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.
    Liu K; Warnow TJ; Holder MT; Nelesen SM; Yu J; Stamatakis AP; Linder CR
    Syst Biol; 2012 Jan; 61(1):90-106. PubMed ID: 22139466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of SVDquartets and other coalescent-based species tree estimation methods.
    Chou J; Gupta A; Yaduvanshi S; Davidson R; Nute M; Mirarab S; Warnow T
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S2. PubMed ID: 26449249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus properties for the deep coalescence problem and their application for scalable tree search.
    Lin HT; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S12. PubMed ID: 22759417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring Metric Trees from Weighted Quartets via an Intertaxon Distance.
    Yourdkhani S; Rhodes JA
    Bull Math Biol; 2020 Jul; 82(7):97. PubMed ID: 32676801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.