BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

813 related articles for article (PubMed ID: 32299344)

  • 1. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scMNMF: a novel method for single-cell multi-omics clustering based on matrix factorization.
    Qiu Y; Guo D; Zhao P; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization.
    Ni Y; He J; Chalise P
    Stat Appl Genet Mol Biol; 2023 Jan; 22(1):. PubMed ID: 37937887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust correlation estimation and UMAP assisted topological analysis of omics data for disease subtyping.
    Rather AA; Chachoo MA
    Comput Biol Med; 2023 Mar; 155():106640. PubMed ID: 36774889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised classification of multi-omics data during cardiac remodeling using deep learning.
    Chung NC; Mirza B; Choi H; Wang J; Wang D; Ping P; Wang W
    Methods; 2019 Aug; 166():66-73. PubMed ID: 30853547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration.
    Pierre-Jean M; Deleuze JF; Le Floch E; Mauger F
    Brief Bioinform; 2020 Dec; 21(6):2011-2030. PubMed ID: 31792509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components.
    Park M; Kim D; Moon K; Park T
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33147797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-omics clustering for cancer subtyping based on latent subspace learning.
    Ye X; Shang Y; Shi T; Zhang W; Sakurai T
    Comput Biol Med; 2023 Sep; 164():107223. PubMed ID: 37490833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based ovarian cancer subtypes identification using multi-omics data.
    Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF
    BioData Min; 2020; 13():10. PubMed ID: 32863885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-omic and multi-view clustering algorithms: review and cancer benchmark.
    Rappoport N; Shamir R
    Nucleic Acids Res; 2018 Nov; 46(20):10546-10562. PubMed ID: 30295871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder.
    Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X
    Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.