These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32299950)

  • 21. Expanded organic building units for the construction of highly porous metal-organic frameworks.
    Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD
    Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity.
    Madden DG; O'Nolan D; Rampal N; Babu R; Çamur C; Al Shakhs AN; Zhang SY; Rance GA; Perez J; Maria Casati NP; Cuadrado-Collados C; O'Sullivan D; Rice NP; Gennett T; Parilla P; Shulda S; Hurst KE; Stavila V; Allendorf MD; Silvestre-Albero J; Forse AC; Champness NR; Chapman KW; Fairen-Jimenez D
    J Am Chem Soc; 2022 Aug; 144(30):13729-13739. PubMed ID: 35876689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111.
    Peng Y; Srinivas G; Wilmer CE; Eryazici I; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    Chem Commun (Camb); 2013 Apr; 49(29):2992-4. PubMed ID: 23459705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of an acetylene bond on hydrogen adsorption in diamond-like carbon allotropes: from first principles to atomic simulation.
    Wu X; Li L; Fang T; Wang Y; Cai W; Xiang Z
    Phys Chem Chem Phys; 2017 Mar; 19(13):9261-9269. PubMed ID: 28322397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational design of tetrazolate-based metal-organic frameworks for CH
    Wu X; Peng L; Xiang S; Cai W
    Phys Chem Chem Phys; 2018 Dec; 20(48):30150-30158. PubMed ID: 30357179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High methane storage capacity in aluminum metal-organic frameworks.
    Gándara F; Furukawa H; Lee S; Yaghi OM
    J Am Chem Soc; 2014 Apr; 136(14):5271-4. PubMed ID: 24661065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine Tuning of MOF-505 Analogues To Reduce Low-Pressure Methane Uptake and Enhance Methane Working Capacity.
    Zhang M; Zhou W; Pham T; Forrest KA; Liu W; He Y; Wu H; Yildirim T; Chen B; Space B; Pan Y; Zaworotko MJ; Bai J
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11426-11430. PubMed ID: 28707307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand Tailoring Strategy of a Metal-Organic Framework for Optimizing Methane Storage Working Capacities.
    Chen JR; Luo YQ; He S; Zhou HL; Huang XC
    Inorg Chem; 2022 Jul; 61(27):10417-10424. PubMed ID: 35767723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methane Storage in Paddlewheel-Based Porous Coordination Cages.
    Rowland CA; Lorzing GR; Gosselin AJ; Trump BA; Yap GPA; Brown CM; Bloch ED
    J Am Chem Soc; 2018 Sep; 140(36):11153-11157. PubMed ID: 30122041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High uptakes of methane in Li-doped 3D covalent organic frameworks.
    Lan J; Cao D; Wang W
    Langmuir; 2010 Jan; 26(1):220-6. PubMed ID: 20038169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation.
    Wang W; Yuan D
    Sci Rep; 2014 Jul; 4():5711. PubMed ID: 25026895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K.
    Mendoza-Cortés JL; Han SS; Goddard WA
    J Phys Chem A; 2012 Feb; 116(6):1621-31. PubMed ID: 22188543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational Design and Synthesis of a Highly Porous Copper-Based Interpenetrated Metal-Organic Framework for High CO
    Bose P; Bai L; Ganguly R; Zou R; Zhao Y
    Chempluschem; 2015 Aug; 80(8):1259-1266. PubMed ID: 31973289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2009 Apr; 131(13):4995-5000. PubMed ID: 19275154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exceptional H2 saturation uptake in microporous metal-organic frameworks.
    Wong-Foy AG; Matzger AJ; Yaghi OM
    J Am Chem Soc; 2006 Mar; 128(11):3494-5. PubMed ID: 16536503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature.
    Millward AR; Yaghi OM
    J Am Chem Soc; 2005 Dec; 127(51):17998-9. PubMed ID: 16366539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks.
    Ahmed A; Seth S; Purewal J; Wong-Foy AG; Veenstra M; Matzger AJ; Siegel DJ
    Nat Commun; 2019 Apr; 10(1):1568. PubMed ID: 30952862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dibromomethane Knitted Highly Porous Hyper-Cross-Linked Polymers for Efficient High-Pressure Methane Storage.
    Yang S; Zhong Z; Hu J; Wang X; Tan B
    Adv Mater; 2024 May; 36(19):e2307579. PubMed ID: 38288565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.