BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32300186)

  • 21. Standalone cell culture microfluidic device-based microphysiological system for automated cell observation and application in nephrotoxicity tests.
    Kimura H; Nakamura H; Goto T; Uchida W; Uozumi T; Nishizawa D; Shinha K; Sakagami J; Doi K
    Lab Chip; 2024 Jan; 24(3):408-421. PubMed ID: 38131210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells.
    Sohn SJ; Kim SY; Kim HS; Chun YJ; Han SY; Kim SH; Moon A
    Toxicol Lett; 2013 Mar; 217(3):235-42. PubMed ID: 23287709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Cell Printing of Advanced Vascularized Proximal Tubule-on-a-Chip for Drug Induced Nephrotoxicity Advancement.
    Singh NK; Kim JY; Jang J; Kim YK; Cho DW
    ACS Appl Bio Mater; 2023 Sep; 6(9):3750-3758. PubMed ID: 37606916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeated dose multi-drug testing using a microfluidic chip-based coculture of human liver and kidney proximal tubules equivalents.
    Lin N; Zhou X; Geng X; Drewell C; Hübner J; Li Z; Zhang Y; Xue M; Marx U; Li B
    Sci Rep; 2020 Jun; 10(1):8879. PubMed ID: 32483208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons.
    Mo SJ; Lee JH; Kye HG; Lee JM; Kim EJ; Geum D; Sun W; Chung BG
    Analyst; 2020 Apr; 145(8):3081-3089. PubMed ID: 32150196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protection against cisplatin-induced nephrotoxicity by Spirulina in rats.
    Mohan IK; Khan M; Shobha JC; Naidu MU; Prayag A; Kuppusamy P; Kutala VK
    Cancer Chemother Pharmacol; 2006 Dec; 58(6):802-8. PubMed ID: 16552571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip.
    Kim S; LesherPerez SC; Kim BC; Yamanishi C; Labuz JM; Leung B; Takayama S
    Biofabrication; 2016 Mar; 8(1):015021. PubMed ID: 27011358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug absorption related nephrotoxicity assessment on an intestine-kidney chip.
    Li Z; Su W; Zhu Y; Tao T; Li D; Peng X; Qin J
    Biomicrofluidics; 2017 May; 11(3):034114. PubMed ID: 28652884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug-induced nephrotoxicity: clinical impact and preclinical in vitro models.
    Tiong HY; Huang P; Xiong S; Li Y; Vathsala A; Zink D
    Mol Pharm; 2014 Jul; 11(7):1933-48. PubMed ID: 24502545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.
    Mattern K; Beißner N; Reichl S; Dietzel A
    Eur J Pharm Biopharm; 2018 May; 126():159-165. PubMed ID: 28442371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of rapid transepithelial electrical resistance (TEER) measurement as a metric of kidney toxicity in a high-throughput microfluidic culture system.
    Shaughnessey EM; Kann SH; Azizgolshani H; Black LD; Charest JL; Vedula EM
    Sci Rep; 2022 Aug; 12(1):13182. PubMed ID: 35915212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect Assessment of Aurantio-Obtusin on Novel Human Renal Glomerular Endothelial Cells Model Using a Microfluidic Chip.
    Qin W; Yang Z; Yin J; Chen D; Huo J; Wang J; Wang L; Zhuo Q
    Nutrients; 2022 Nov; 14(21):. PubMed ID: 36364876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated microfludic device for culturing and screening of Giardia lamblia.
    Zheng GX; Zhang XM; Yang YS; Zeng SR; Wei JF; Wang YH; Li YJ
    Exp Parasitol; 2014 Feb; 137():1-7. PubMed ID: 24316463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-cultures of renal progenitors and endothelial cells on kidney decellularized matrices replicate the renal tubular environment in vitro.
    Sobreiro-Almeida R; Melica ME; Lasagni L; Romagnani P; Neves NM
    Acta Physiol (Oxf); 2020 Sep; 230(1):e13491. PubMed ID: 32365407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Evaluation and Nephrotoxicity Assessment of Human Renal Proximal Tubule Cells on a Chip.
    Jing B; Yan L; Li J; Luo P; Ai X; Tu P
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform.
    Wu J; Jie M; Dong X; Qi H; Lin JM
    Rapid Commun Mass Spectrom; 2016 Aug; 30 Suppl 1():80-6. PubMed ID: 27539420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability.
    Wong JF; Simmons CA
    Lab Chip; 2019 Mar; 19(6):1060-1070. PubMed ID: 30778462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.