BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 32300295)

  • 21. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing Cybersickness in 360-Degree Virtual Reality.
    Arshad I; De Mello P; Ender M; McEwen JD; Ferré ER
    Multisens Res; 2021 Dec; ():1-17. PubMed ID: 34936982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the effect of multi-sensory stimulations on simulator sickness and sense of presence during HMD-mediated VR experience.
    Grassini S; Laumann K; de Martin Topranin V; Thorp S
    Ergonomics; 2021 Dec; 64(12):1532-1542. PubMed ID: 34165389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virtual Reality Sickness Reduces Attention During Immersive Experiences.
    Mimnaugh KJ; Center EG; Suomalainen M; Becerra I; Lozano E; Murrieta-Cid R; Ojala T; LaValle SM; Federmeier KD
    IEEE Trans Vis Comput Graph; 2023 Nov; 29(11):4394-4404. PubMed ID: 37788212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Frame Rate on User Experience, Performance, and Simulator Sickness in Virtual Reality.
    Wang J; Shi R; Zheng W; Xie W; Kao D; Liang HN
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Usability Comparisons of Head-Mounted vs. Stereoscopic Desktop Displays in a Virtual Reality Environment with Pain Patients.
    Tong X; Gromala D; Gupta D; Squire P
    Stud Health Technol Inform; 2016; 220():424-31. PubMed ID: 27046617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What factors influence continuous usage intention of head-mounted display-based virtual reality content?: a cross-sectional survey.
    Choi J; Moon H; Park M
    Korean J Women Health Nurs; 2023 Sep; 29(3):208-218. PubMed ID: 37813664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Cybersickness Caused by Head-Mounted Display-Based Virtual Reality on Physiological Responses: Cross-sectional Study.
    Kim YS; Won J; Jang SW; Ko J
    JMIR Serious Games; 2022 Oct; 10(4):e37938. PubMed ID: 36251360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Visual Guides to Reduce Virtual Reality Sickness in First-Person Shooter Games: Correlation Analysis.
    Seok KH; Kim Y; Son W; Kim YS
    JMIR Serious Games; 2021 Jul; 9(3):e18020. PubMed ID: 34264196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Virtual Reality to Improve Apathy in Residential Aged Care: Mixed Methods Study.
    Saredakis D; Keage HA; Corlis M; Loetscher T
    J Med Internet Res; 2020 Jun; 22(6):e17632. PubMed ID: 32469314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virtual Reality-A Supplement to Posturography or a Novel Balance Assessment Tool?
    Rosiak O; Puzio A; Kaminska D; Zwolinski G; Jozefowicz-Korczynska M
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning.
    Srivastava P; Rimzhim A; Vijay P; Singh S; Chandra S
    Front Robot AI; 2019; 6():50. PubMed ID: 33501066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG).
    Lim HK; Ji K; Woo YS; Han DU; Lee DH; Nam SG; Jang KM
    Neurosci Lett; 2021 Jan; 743():135589. PubMed ID: 33359731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical predictors of cybersickness in virtual reality (VR) among highly stressed people.
    Kim H; Kim DJ; Chung WH; Park KA; Kim JDK; Kim D; Kim K; Jeon HJ
    Sci Rep; 2021 Jun; 11(1):12139. PubMed ID: 34108520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Omnidirectional Virtual Visual Acuity: A User-Centric Visual Clarity Metric for Virtual Reality Head-Mounted Displays and Environments.
    Wang J; Shi R; Li X; Wei Y; Liang HN
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2033-2043. PubMed ID: 38437113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of Specific Anxiety Symptoms and Virtual Reality Sickness Using In Situ Autonomic Physiological Signals During Virtual Reality Treatment in Patients With Social Anxiety Disorder: Mixed Methods Study.
    Chun JY; Kim HJ; Hur JW; Jung D; Lee HJ; Pack SP; Lee S; Kim G; Cho CY; Lee SM; Lee H; Choi S; Cheong T; Cho CH
    JMIR Serious Games; 2022 Sep; 10(3):e38284. PubMed ID: 36112407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cybersickness and postural stability of first time VR users playing VR videogames.
    da Silva Marinho A; Terton U; Jones CM
    Appl Ergon; 2022 May; 101():103698. PubMed ID: 35151982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.