These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32300656)

  • 1. Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production.
    Jeon D; Park J; Shin C; Kim H; Jang JW; Lee DW; Ryu J
    Sci Adv; 2020 Apr; 6(15):eaaz3944. PubMed ID: 32300656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy.
    Liu Y; Lu X; Peng Y; Chen Q
    Anal Chem; 2021 Sep; 93(36):12337-12345. PubMed ID: 34460230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superwetting Electrodes for Gas-Involving Electrocatalysis.
    Xu W; Lu Z; Sun X; Jiang L; Duan X
    Acc Chem Res; 2018 Jul; 51(7):1590-1598. PubMed ID: 29883085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced Superaerophobicity onto a Non-superaerophobic Catalytic Surface for Enhanced Hydrogen Evolution Reaction.
    Akbar K; Hussain S; Truong L; Roy SB; Jeon JH; Jerng SK; Kim M; Yi Y; Jung J; Chun SH
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43674-43680. PubMed ID: 29179532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superaerophobic RuO
    Jiang M; Wang H; Li Y; Zhang H; Zhang G; Lu Z; Sun X; Jiang L
    Small; 2017 Jan; 13(4):. PubMed ID: 27753209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Releasing the Bubbles: Nanotopographical Electrocatalyst Design for Efficient Photoelectrochemical Hydrogen Production in Microgravity Environment.
    Akay Ö; Poon J; Robertson C; Abdi FF; Cuenya BR; Giersig M; Brinkert K
    Adv Sci (Weinh); 2022 Mar; 9(8):e2105380. PubMed ID: 35060365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes.
    Xu W; Lu Z; Wan P; Kuang Y; Sun X
    Small; 2016 May; 12(18):2492-8. PubMed ID: 26997618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The wettability of gas bubbles: from macro behavior to nano structures to applications.
    Huang C; Guo Z
    Nanoscale; 2018 Nov; 10(42):19659-19672. PubMed ID: 30335112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodology for Investigating Electrochemical Gas Evolution Reactions: Floating Electrode as a Means for Effective Gas Bubble Removal.
    Jovanovič P; Stojanovski K; Bele M; Dražić G; Koderman Podboršek G; Suhadolnik L; Gaberšček M; Hodnik N
    Anal Chem; 2019 Aug; 91(16):10353-10356. PubMed ID: 31379155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Electrochemical Stability of TiO
    Reed PJ; Mehrabi H; Schichtl ZG; Coridan RH
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43691-43698. PubMed ID: 30462916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS₂ nanostructured electrodes.
    Lu Z; Zhu W; Yu X; Zhang H; Li Y; Sun X; Wang X; Wang H; Wang J; Luo J; Lei X; Jiang L
    Adv Mater; 2014 May; 26(17):2683-7, 2615. PubMed ID: 24488883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas.
    Yong J; Chen F; Huo J; Fang Y; Yang Q; Zhang J; Hou X
    Nanoscale; 2018 Feb; 10(8):3688-3696. PubMed ID: 29340400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer.
    Zhang C; Xu Z; Han N; Tian Y; Kallio T; Yu C; Jiang L
    Sci Adv; 2023 Jan; 9(3):eadd6978. PubMed ID: 36652519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser Structuring of Underwater Bubble-Repellent Surface.
    Yang S; Yin K; Dong X; He J; Duan JA
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8381-8385. PubMed ID: 30189963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser.
    Yong J; Zhuang J; Bai X; Huo J; Yang Q; Hou X; Chen F
    Nanoscale; 2021 Jun; 13(23):10414-10424. PubMed ID: 34018504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater Superaerophobic and Superaerophilic Nanoneedles-Structured Meshes for Water/Bubbles Separation: Removing or Collecting Gas Bubbles in Water.
    Yong J; Chen F; Li W; Huo J; Fang Y; Yang Q; Bian H; Hou X
    Glob Chall; 2018 Apr; 2(4):1700133. PubMed ID: 31565330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO
    Meng C; Wang B; Gao Z; Liu Z; Zhang Q; Zhai J
    Sci Rep; 2017 Feb; 7():41825. PubMed ID: 28165487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Superaerophobic" Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities.
    Yu X; Yu ZY; Zhang XL; Zheng YR; Duan Y; Gao Q; Wu R; Sun B; Gao MR; Wang G; Yu SH
    J Am Chem Soc; 2019 May; 141(18):7537-7543. PubMed ID: 31017425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Tafel Kinetics for Electrolytic Hydrogen Evolution on Isolated Micron Scale Electrocatalysts on Semiconductor Interfaces.
    Coridan RH; Schichtl ZG; Sun T; Fezzaa K
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24612-20. PubMed ID: 27575549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexagonal Arrays of Cylindrical Nickel Microstructures for Improved Oxygen Evolution Reaction.
    Paul MT; Yee BB; Bruce DR; Gates BD
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7036-7043. PubMed ID: 28164693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.