BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32301171)

  • 1. In situ S-isotope compositions of sulfate and sulfide from the 3.2 Ga Moodies Group, South Africa: A record of oxidative sulfur cycling.
    Nabhan S; Marin-Carbonne J; Mason PRD; Heubeck C
    Geobiology; 2020 Jul; 18(4):426-444. PubMed ID: 32301171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple sulphur isotope record of Paleoarchean sedimentary rocks across the Onverwacht Group, Barberton Greenstone Belt, South Africa.
    Grosch EG; McLoughlin N; Whitehouse M
    Geobiology; 2023 Mar; 21(2):153-167. PubMed ID: 36571166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.
    Muller É; Philippot P; Rollion-Bard C; Cartigny P
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7432-7. PubMed ID: 27330111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction.
    Marin-Carbonne J; Busigny V; Miot J; Rollion-Bard C; Muller E; Drabon N; Jacob D; Pont S; Robyr M; Bontognali TRR; François C; Reynaud S; Van Zuilen M; Philippot P
    Geobiology; 2020 May; 18(3):306-325. PubMed ID: 32118348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric sulfur isotopic anomalies recorded at Mt. Everest across the Anthropocene.
    Lin M; Kang S; Shaheen R; Li C; Hsu SC; Thiemens MH
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6964-6969. PubMed ID: 29915076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low-oxygen cyanobacterial mats.
    Gomes ML; Klatt JM; Dick GJ; Grim SL; Rico KI; Medina M; Ziebis W; Kinsman-Costello L; Sheldon ND; Fike DA
    Geobiology; 2022 Jan; 20(1):60-78. PubMed ID: 34331395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Dziani Dzaha Lake: A long-awaited modern analogue for superheavy pyrites.
    Cadeau P; Cartigny P; Thomazo C; Jézéquel D; Leboulanger C; Sarazin G; Ader M
    Geobiology; 2022 May; 20(3):444-461. PubMed ID: 35064739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple sulfur isotope constraints on microbial sulfate reduction below an Archean seafloor hydrothermal system.
    Aoyama S; Ueno Y
    Geobiology; 2018 Mar; 16(2):107-120. PubMed ID: 29243877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depositional and tectonic setting of the Archean Moodies Group, Barberton Greenstone Belt, South Africa.
    Heubeck C; Lowe DR
    Precambrian Res; 1994; 68():257-90. PubMed ID: 11539505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unprecedented
    Drake H; Whitehouse MJ; Heim C; Reiners PW; Tillberg M; Hogmalm KJ; Dopson M; Broman C; Åström ME
    Geobiology; 2018 Sep; 16(5):556-574. PubMed ID: 29947123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic sulfur was integral to the Archean sulfur cycle.
    Fakhraee M; Katsev S
    Nat Commun; 2019 Oct; 10(1):4556. PubMed ID: 31591394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field.
    Eickmann B; Thorseth IH; Peters M; Strauss H; Bröcker M; Pedersen RB
    Geobiology; 2014 Jul; 12(4):308-21. PubMed ID: 24725254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes.
    Farquhar J; Cliff J; Zerkle AL; Kamyshny A; Poulton SW; Claire M; Adams D; Harms B
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17638-43. PubMed ID: 23407162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.
    Ohmoto H; Kakegawa T; Lowe DR
    Science; 1993 Oct; 262():555-7. PubMed ID: 11539502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle.
    Canfield DE
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8443-6. PubMed ID: 23650346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep.
    Stevens EW; Bailey JV; Flood BE; Jones DS; Gilhooly WP; Joye SB; Teske A; Mason OU
    Geobiology; 2015 Nov; 13(6):588-603. PubMed ID: 26462132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur isotope's signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sulfate reduction.
    Marin-Carbonne J; Remusat L; Sforna MC; Thomazo C; Cartigny P; Philippot P
    Geobiology; 2018 Mar; 16(2):121-138. PubMed ID: 29380506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment.
    Halevy I
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17644-9. PubMed ID: 23572589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining the structure of the Archean mass-independent sulfur isotope record.
    Halevy I; Johnston DT; Schrag DP
    Science; 2010 Jul; 329(5988):204-7. PubMed ID: 20508089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Archean sulfur cycle and the early history of atmospheric oxygen.
    Canfield DE; Habicht KS; Thamdrup B
    Science; 2000 Apr; 288(5466):658-61. PubMed ID: 10784446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.