BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 32301267)

  • 1. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration.
    Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM
    Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development.
    Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM
    Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence.
    Hou J; Feng HQ; Chang HW; Liu Y; Li GH; Yang S; Sun CH; Zhang MZ; Yuan Y; Sun J; Zhu-Salzman K; Zhang H; Qin QM
    New Phytol; 2020 Jan; 225(2):930-947. PubMed ID: 31529514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration.
    Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM
    Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus
    Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea.
    An B; Li B; Li H; Zhang Z; Qin G; Tian S
    New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox systems in Botrytis cinerea: impact on development and virulence.
    Viefhues A; Heller J; Temme N; Tudzynski P
    Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Profiling Data of
    Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A
    Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519
    [No Abstract]   [Full Text] [Related]  

  • 9. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB
    Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors.
    Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M
    Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.
    Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T
    Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination and infection virulence of Botrytis cinerea in vitro.
    Meng X; Jin W; Wu F
    Gene; 2020 Oct; 759():145002. PubMed ID: 32726608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment.
    Castillo L; Plaza V; Larrondo LF; Canessa P
    Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.
    Zhang Z; Qin G; Li B; Tian S
    Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The septin protein Sep4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation.
    Feng HQ; Li GH; Du SW; Yang S; Li XQ; de Figueiredo P; Qin QM
    Environ Microbiol; 2017 May; 19(5):1730-1749. PubMed ID: 27878927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage.
    Leroch M; Kleber A; Silva E; Coenen T; Koppenhöfer D; Shmaryahu A; Valenzuela PD; Hahn M
    Eukaryot Cell; 2013 Apr; 12(4):614-26. PubMed ID: 23417562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.