These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32301414)

  • 1. Predictors of attrition in a longitudinal population-based study of aging.
    Jacobsen E; Ran X; Liu A; Chang CH; Ganguli M
    Int Psychogeriatr; 2021 Aug; 33(8):767-778. PubMed ID: 32301414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attrition and bias in the MRC cognitive function and ageing study: an epidemiological investigation.
    Matthews FE; Chatfield M; Freeman C; McCracken C; Brayne C;
    BMC Public Health; 2004 Apr; 4():12. PubMed ID: 15113437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictors of two forms of attrition in a longitudinal health study involving ageing participants: an analysis based on the Whitehall II study.
    Mein G; Johal S; Grant RL; Seale C; Ashcroft R; Tinker A
    BMC Med Res Methodol; 2012 Oct; 12():164. PubMed ID: 23106792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attrition from longitudinal ageing studies and performance across domains of cognitive functioning: an individual participant data meta-analysis.
    Hernandez R; Jin H; Lee PJ; Schneider S; Junghaenel DU; Stone AA; Meijer E; Gao H; Maupin D; Zelinski EM
    BMJ Open; 2024 Mar; 14(3):e079241. PubMed ID: 38453191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictors of the rate of cognitive decline in older adults using machine learning.
    Ahmadzadeh M; Cosco TD; Best JR; Christie GJ; DiPaola S
    PLoS One; 2023; 18(3):e0280029. PubMed ID: 36867596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of participant attrition on child injury outcome estimates: a longitudinal birth cohort study in Australia.
    Cameron CM; Osborne JM; Spinks AB; Davey TM; Sipe N; McClure RJ
    BMJ Open; 2017 Jun; 7(6):e015584. PubMed ID: 28667218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictors of attrition in a longitudinal cognitive aging study: the Maastricht Aging Study (MAAS).
    Van Beijsterveldt CE; van Boxtel MP; Bosma H; Houx PJ; Buntinx F; Jolles J
    J Clin Epidemiol; 2002 Mar; 55(3):216-23. PubMed ID: 11864790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk of attrition in a longitudinal study of skin cancer: logistic and survival models can give different results.
    David MC; van der Pols JC; Williams GM; Alati R; Green AC; Ware RS
    J Clin Epidemiol; 2013 Aug; 66(8):888-95. PubMed ID: 23810028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors associated with study attrition in a pilot randomised controlled trial to explore the role of exercise-assisted reduction to stop (EARS) smoking in disadvantaged groups.
    Thompson TP; Greaves CJ; Ayres R; Aveyard P; Warren FC; Byng R; Taylor RS; Campbell JL; Ussher M; Michie S; West R; Taylor AH
    Trials; 2016 Oct; 17(1):524. PubMed ID: 27788686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Dropouts From an Electronic Health Platform for Lifestyle Interventions: Analysis of Methods and Predictors.
    Pedersen DH; Mansourvar M; Sortsø C; Schmidt T
    J Med Internet Res; 2019 Sep; 21(9):e13617. PubMed ID: 31486409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between active ageing and health using longitudinal data from Denmark, France, Italy and England.
    Di Gessa G; Grundy E
    J Epidemiol Community Health; 2014 Mar; 68(3):261-7. PubMed ID: 24272919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions.
    Lo-Ciganic WH; Huang JL; Zhang HH; Weiss JC; Wu Y; Kwoh CK; Donohue JM; Cochran G; Gordon AJ; Malone DC; Kuza CC; Gellad WF
    JAMA Netw Open; 2019 Mar; 2(3):e190968. PubMed ID: 30901048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain MRI markers and dropout in a longitudinal study of cognitive aging: the Three-City Dijon Study.
    Glymour MM; Chêne G; Tzourio C; Dufouil C
    Neurology; 2012 Sep; 79(13):1340-8. PubMed ID: 22972647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for bias due to selective attrition: the example of smoking and cognitive decline.
    Weuve J; Tchetgen Tchetgen EJ; Glymour MM; Beck TL; Aggarwal NT; Wilson RS; Evans DA; Mendes de Leon CF
    Epidemiology; 2012 Jan; 23(1):119-28. PubMed ID: 21989136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying machine learning methods to develop a successful aging maintenance prediction model based on physical fitness tests.
    Cai T; Long J; Kuang J; You F; Zou T; Wu L
    Geriatr Gerontol Int; 2020 Jun; 20(6):637-642. PubMed ID: 32358851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demographic, neuropsychological, and functional predictors of rate of longitudinal cognitive decline in Hispanic older adults.
    Farias ST; Mungas D; Hinton L; Haan M
    Am J Geriatr Psychiatry; 2011 May; 19(5):440-50. PubMed ID: 20808135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors Associated with Attrition of Adult Participants in a Longitudinal Database: A National Institute on Disability, Independent Living, and Rehabilitation Research Burn Model System Study.
    Bamer AM; McMullen K; Gibran N; Holavanahalli R; Schneider JC; Carrougher GJ; Wiechman S; Wolfe A; Amtmann D
    J Burn Care Res; 2020 Feb; 41(2):270-279. PubMed ID: 31738436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying and predicting physical limitation and cognitive decline trajectory group of older adults in China: A data-driven machine learning analysis.
    Zhu J; Wu Y; Lin S; Duan S; Wang X; Fang Y
    J Affect Disord; 2024 Apr; 350():590-599. PubMed ID: 38218258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.