These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 32301446)
1. Nanoplasmon-enhanced drop-screen for high throughput single-cell nucleocytoplasmic miRNA profiling. Liu J; Sun G; Wei SC; Guo S; Lin WN; Chen CH Lab Chip; 2020 Jun; 20(11):1939-1946. PubMed ID: 32301446 [TBL] [Abstract][Full Text] [Related]
2. Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification. Guo S; Lin WN; Hu Y; Sun G; Phan DT; Chen CH Lab Chip; 2018 Jun; 18(13):1914-1920. PubMed ID: 29877542 [TBL] [Abstract][Full Text] [Related]
3. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars. Lee JU; Kim WH; Lee HS; Park KH; Sim SJ Small; 2019 Apr; 15(17):e1804968. PubMed ID: 30828996 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772 [TBL] [Abstract][Full Text] [Related]
5. High-Throughput and Sensitive Fluorimetric Strategy for MicroRNAs in Blood Using Wettable Microwells Array and Silver Nanoclusters with Red Fluorescence Enhanced by Metal Organic Frameworks. Feng L; Liu M; Liu H; Fan C; Cai Y; Chen L; Zhao M; Chu S; Wang H ACS Appl Mater Interfaces; 2018 Jul; 10(28):23647-23656. PubMed ID: 29943969 [TBL] [Abstract][Full Text] [Related]
7. Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification. Liu YQ; Zhang M; Yin BC; Ye BC Anal Chem; 2012 Jun; 84(12):5165-9. PubMed ID: 22655700 [TBL] [Abstract][Full Text] [Related]
8. Target-triggered entropy-driven amplification system-templated silver nanoclusters for multiplexed microRNA analysis. Li F; Li G; Cao S; Liu B; Ren X; Kang N; Qiu F Biosens Bioelectron; 2021 Jan; 172():112757. PubMed ID: 33129074 [TBL] [Abstract][Full Text] [Related]
9. Discrimination of single nucleotide mismatches using a scalable, flexible, and transparent three-dimensional nanostructure-based plasmonic miRNA sensor with high sensitivity. Na HK; Wi JS; Son HY; Ok JG; Huh YM; Lee TG Biosens Bioelectron; 2018 Aug; 113():39-45. PubMed ID: 29727750 [TBL] [Abstract][Full Text] [Related]
11. A Dual-Signal Twinkling Probe for Fluorescence-SERS Dual Spectrum Imaging and Detection of miRNA in Single Living Cell via Absolute Value Coupling of Reciprocal Signals. Zhang N; Ye S; Wang Z; Li R; Wang M ACS Sens; 2019 Apr; 4(4):924-930. PubMed ID: 30924337 [TBL] [Abstract][Full Text] [Related]
12. Inverse Molecular Sentinel-Integrated Fiberoptic Sensor for Direct and in Situ Detection of miRNA Targets. Strobbia P; Ran Y; Crawford BM; Cupil-Garcia V; Zentella R; Wang HN; Sun TP; Vo-Dinh T Anal Chem; 2019 May; 91(9):6345-6352. PubMed ID: 30916925 [TBL] [Abstract][Full Text] [Related]
13. High-content screen in human pluripotent cells identifies miRNA-regulated pathways controlling pluripotency and differentiation. de Souza Lima IM; Schiavinato JLDS; Paulino Leite SB; Sastre D; Bezerra HLO; Sangiorgi B; Corveloni AC; Thomé CH; Faça VM; Covas DT; Zago MA; Giacca M; Mano M; Panepucci RA Stem Cell Res Ther; 2019 Jul; 10(1):202. PubMed ID: 31287022 [TBL] [Abstract][Full Text] [Related]
14. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling. Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768 [TBL] [Abstract][Full Text] [Related]
15. Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell. Deng R; Zhang K; Li J Acc Chem Res; 2017 Apr; 50(4):1059-1068. PubMed ID: 28355077 [TBL] [Abstract][Full Text] [Related]
16. High-throughput and ultra-sensitive single-cell profiling of multiple microRNAs and identification of human cancer. Li L; Lu M; Fan Y; Shui L; Xie S; Sheng R; Si H; Li Q; Wang Y; Tang B Chem Commun (Camb); 2019 Aug; 55(70):10404-10407. PubMed ID: 31402361 [TBL] [Abstract][Full Text] [Related]
17. Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. He D; Wang H; Ho SL; Chan HN; Hai L; He X; Wang K; Li HW Theranostics; 2019; 9(15):4494-4507. PubMed ID: 31285775 [No Abstract] [Full Text] [Related]
18. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction. Tian H; Sun Y; Liu C; Duan X; Tang W; Li Z Anal Chem; 2016 Dec; 88(23):11384-11389. PubMed ID: 27800678 [TBL] [Abstract][Full Text] [Related]
19. Nano metal-organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Wu Y; Han J; Xue P; Xu R; Kang Y Nanoscale; 2015 Feb; 7(5):1753-9. PubMed ID: 25514895 [TBL] [Abstract][Full Text] [Related]
20. DNA-templated silver nanoclusters locate microRNAs in the nuclei of gastric cancer cells. Zhang J; Liu Y; Zhi X; Zhang C; Liu TF; Cui D Nanoscale; 2018 Jun; 10(23):11079-11090. PubMed ID: 29872807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]