These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32301470)

  • 1. Stretching DNA to twice the normal length with single-molecule hydrodynamic trapping.
    Jiang Y; Feldman T; Bakx JAM; Yang D; Wong WP
    Lab Chip; 2020 May; 20(10):1780-1791. PubMed ID: 32301470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Local Molecular Tension Using Intercalated DNA Fluorescence.
    King GA; Biebricher AS; Heller I; Peterman EJG; Wuite GJL
    Nano Lett; 2018 Apr; 18(4):2274-2281. PubMed ID: 29473755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy.
    Liu N; Bu T; Song Y; Zhang W; Li J; Zhang W; Shen J; Li H
    Langmuir; 2010 Jun; 26(12):9491-6. PubMed ID: 20178341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperstretching DNA.
    Schakenraad K; Biebricher AS; Sebregts M; Ten Bensel B; Peterman EJG; Wuite GJL; Heller I; Storm C; van der Schoot P
    Nat Commun; 2017 Dec; 8(1):2197. PubMed ID: 29259297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A versatile and high-throughput flow-cell system combined with fluorescence imaging for simultaneous single-molecule force measurement and visualization.
    Zou Z; Liang J; Jia Q; Bai D; Xie W; Wu W; Tan C; Ma J
    Nanoscale; 2023 Nov; 15(43):17443-17454. PubMed ID: 37859523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the force in flow-cell based single-molecule stretching experiments.
    Liang J; Li J; Zhong Z; Rujiralai T; Ma J
    Nanoscale; 2021 Oct; 13(37):15916-15927. PubMed ID: 34522927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A force sensor that converts fluorescence signal into force measurement utilizing short looped DNA.
    Mustafa G; Chuang CY; Roy WA; Farhath MM; Pokhrel N; Ma Y; Nagasawa K; Antony E; Comstock MJ; Basu S; Balci H
    Biosens Bioelectron; 2018 Dec; 121():34-40. PubMed ID: 30195120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomechanics of Diaminopurine-Substituted DNA.
    Cristofalo M; Kovari D; Corti R; Salerno D; Cassina V; Dunlap D; Mantegazza F
    Biophys J; 2019 Mar; 116(5):760-771. PubMed ID: 30795872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-induced melting of the DNA double helix 1. Thermodynamic analysis.
    Rouzina I; Bloomfield VA
    Biophys J; 2001 Feb; 80(2):882-93. PubMed ID: 11159455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-yield fabrication of DNA and RNA constructs for single molecule force and torque spectroscopy experiments.
    Papini FS; Seifert M; Dulin D
    Nucleic Acids Res; 2019 Dec; 47(22):e144. PubMed ID: 31584079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Molecule Analysis and Engineering of DNA Motors.
    Mohapatra S; Lin CT; Feng XA; Basu A; Ha T
    Chem Rev; 2020 Jan; 120(1):36-78. PubMed ID: 31661246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics of diamond-shaped gradient nanopillar arrays for effective DNA translocation into nanochannels.
    Wang C; Bruce RL; Duch EA; Patel JV; Smith JT; Astier Y; Wunsch BH; Meshram S; Galan A; Scerbo C; Pereira MA; Wang D; Colgan EG; Lin Q; Stolovitzky G
    ACS Nano; 2015 Feb; 9(2):1206-18. PubMed ID: 25626162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid.
    Long X; Parks JW; Stone MD
    Methods; 2016 Aug; 105():16-25. PubMed ID: 27320203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic trapping at the one nanometer limit.
    Fields AP; Cohen AE
    Proc Natl Acad Sci U S A; 2011 May; 108(22):8937-42. PubMed ID: 21562206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined optical trapping and single-molecule fluorescence.
    Lang MJ; Fordyce PM; Block SM
    J Biol; 2003; 2(1):6. PubMed ID: 12733997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding enhanced mechanical stability of DNA in the presence of intercalated anticancer drug: Implications for DNA associated processes.
    Sahoo AK; Bagchi B; Maiti PK
    J Chem Phys; 2019 Oct; 151(16):164902. PubMed ID: 31675856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale imaging in DNA nanotechnology.
    Jungmann R; Scheible M; Simmel FC
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(1):66-81. PubMed ID: 22114058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigid Double-Stranded DNA Linkers for Single Molecule Enzyme-Drug Interaction Measurements Using Molecular Recognition Force Spectroscopy.
    Lansakara TI; Morris HS; Singh P; Kohen A; Tivanski AV
    Langmuir; 2020 Apr; 36(15):4174-4183. PubMed ID: 32233509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.