These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 323015)

  • 1. Cooperative and antagonistic interactions of peptidyl-tRNA and antibiotics with bacterial ribosomes.
    Contreras A; Vázquez D
    Eur J Biochem; 1977 Apr; 74(3):539-47. PubMed ID: 323015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mode of action of griseoviridin at the ribosome level.
    Barbacid M; Contreras A; Vazquez D
    Biochim Biophys Acta; 1975 Jul; 395(3):347-54. PubMed ID: 1096949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic interaction of the streptogramins with the ribosome.
    Contreras A; Vázquez D
    Eur J Biochem; 1977 Apr; 74(3):549-51. PubMed ID: 323016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotics as probes of ribosome structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics.
    Pestka S
    Antimicrob Agents Chemother; 1974 Mar; 5(3):255-67. PubMed ID: 4599122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol. lincomycin and erythromycin sites.
    Fernandez-Munoz R; Monro RE; Torres-Pinedo R; Vazquez D
    Eur J Biochem; 1971 Nov; 23(1):185-93. PubMed ID: 4942548
    [No Abstract]   [Full Text] [Related]  

  • 6. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin.
    Lin AH; Murray RW; Vidmar TJ; Marotti KR
    Antimicrob Agents Chemother; 1997 Oct; 41(10):2127-31. PubMed ID: 9333036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid.
    Choi J; Marks J; Zhang J; Chen DH; Wang J; Vázquez-Laslop N; Mankin AS; Puglisi JD
    Nat Chem Biol; 2020 Mar; 16(3):310-317. PubMed ID: 31844301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of inhibition of protein synthesis by macrolide and lincosamide antibiotics.
    Menninger JR
    J Basic Clin Physiol Pharmacol; 1995; 6(3-4):229-50. PubMed ID: 8852269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome.
    Tenson T; Lovmar M; Ehrenberg M
    J Mol Biol; 2003 Jul; 330(5):1005-14. PubMed ID: 12860123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptidyl transfer RNA dissociates during protein synthesis from ribosomes of Escherichia coli.
    Menninger JR
    J Biol Chem; 1976 Jun; 251(11):3392-8. PubMed ID: 776968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of translation in eukaryotic systems by harringtonine.
    Fresno M; Jiménez A; Vázquez D
    Eur J Biochem; 1977 Jan; 72(2):323-30. PubMed ID: 319998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems.
    Chinali G; Nyssen E; Di Giambattista M; Cocito C
    Biochim Biophys Acta; 1988 Nov; 951(1):42-52. PubMed ID: 3142522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hygromycin A, a novel inhibitor of ribosomal peptidyltransferase.
    Guerrero MD; Modolell J
    Eur J Biochem; 1980 Jun; 107(2):409-14. PubMed ID: 6156832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A noncanonical binding site of chloramphenicol revealed via molecular dynamics simulations.
    Makarov GI; Makarova TM
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2940-2947. PubMed ID: 30248377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol.
    Rheinberger HJ; Nierhaus KH
    Eur J Biochem; 1990 Nov; 193(3):643-50. PubMed ID: 2249685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of fusidic acid with peptidyl-transfer-ribonucleic-acid - ribosome complexes.
    San Millan MJ; Vazquez D; Modolell J
    Eur J Biochem; 1975 Sep; 57(2):431-40. PubMed ID: 1100406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Measurements of Erythromycin's Effect on Protein Synthesis Kinetics in Living Bacterial Cells.
    Seefeldt AC; Aguirre Rivera J; Johansson M
    J Mol Biol; 2021 May; 433(10):166942. PubMed ID: 33744313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of 50 S-binding antibiotics to characterize the ribosomal site to which peptidyl-tRNA is bound.
    Odom OW; Hardesty B
    J Biol Chem; 1992 Sep; 267(27):19117-22. PubMed ID: 1527036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synthesis of polyphenylalanine on ribosomes to which erythromycin is bound.
    Odom OW; Picking WD; Tsalkova T; Hardesty B
    Eur J Biochem; 1991 Jun; 198(3):713-22. PubMed ID: 1904819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The extension of polyphenylalanine and polylysine peptides on Escherichia coli ribosomes.
    Hardesty B; Picking WD; Odom OW
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):197-202. PubMed ID: 2207144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.