These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 32301620)

  • 21. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms.
    Loutzenhiser R; Griffin K; Williamson G; Bidani A
    Am J Physiol Regul Integr Comp Physiol; 2006 May; 290(5):R1153-67. PubMed ID: 16603656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide and renal autoregulation.
    Just A
    Kidney Blood Press Res; 1997; 20(3):201-4. PubMed ID: 9293443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of soluble guanylate cyclase in renal hemodynamics and autoregulation in the rat.
    Dautzenberg M; Kahnert A; Stasch JP; Just A
    Am J Physiol Renal Physiol; 2014 Nov; 307(9):F1003-12. PubMed ID: 25209860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoregulation of zonal glomerular filtration rate and renal blood flow in spontaneously hypertensive rats.
    Wang X; Aukland K; Ofstad J; Iversen BM
    Am J Physiol; 1995 Oct; 269(4 Pt 2):F515-21. PubMed ID: 7485536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renal microvascular effects of P2 receptor stimulation.
    Inscho EW
    Clin Exp Pharmacol Physiol; 2001 Apr; 28(4):332-9. PubMed ID: 11339210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of purinergic and angiotensin II receptor function in renal vascular responses and renal injury in angiotensin II-dependent hypertension.
    Franco M; Pérez-Méndez O; Kulthinee S; Navar LG
    Purinergic Signal; 2019 Jun; 15(2):277-285. PubMed ID: 31183668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats.
    Ploth DW; Roy RN; Huang WC; Navar LG
    Hypertension; 1981; 3(1):67-74. PubMed ID: 7203607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of interstitial ATP and adenosine in the regulation of renal hemodynamics and microvascular function.
    Nishiyama A; Rahman M; Inscho EW
    Hypertens Res; 2004 Nov; 27(11):791-804. PubMed ID: 15824461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of adenosine receptor blockade on renal function and renal autoregulation.
    Ibarrola AM; Inscho EW; Vari RC; Navar LG
    J Am Soc Nephrol; 1991 Nov; 2(5):991-9. PubMed ID: 1760542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptations of the renal microcirculation to hypertension.
    Imig JD; Inscho EW
    Microcirculation; 2002; 9(4):315-28. PubMed ID: 12152107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resetting of renal blood autoregulation during acute blood pressure reduction in hypertensive rats.
    Iversen BM; Kvam FI; Matre K; Ofstad J
    Am J Physiol; 1998 Aug; 275(2):R343-9. PubMed ID: 9688667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autoregulation of renal hemodynamics is not impaired by a 'physiologic' dose of glucagon.
    Premen AJ
    Regul Pept; 1988 May; 21(1-2):57-67. PubMed ID: 3393695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purinergic regulation of glomerular microvasculature and tubular function.
    Jankowski M
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 9():121-35. PubMed ID: 19261976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of endothelin to renal vascular tone and autoregulation in the conscious dog.
    Berthold H; Münter K; Just A; Kirchheim HR; Ehmke H
    Am J Physiol; 1999 Mar; 276(3):F417-24. PubMed ID: 10070165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of angiotensin converting enzyme inhibitor and calcium channel blocker on renal function of spontaneously hypertensive rat].
    Endo M
    Nihon Jinzo Gakkai Shi; 1991 Nov; 33(11):1161-72. PubMed ID: 1808367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis.
    Bell TD; DiBona GF; Wang Y; Brands MW
    J Am Soc Nephrol; 2006 Aug; 17(8):2184-92. PubMed ID: 16807404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resetting of the pressure range for blood flow autoregulation in the rat kidney.
    Holm L; Morsing P; Casellas D; Persson AE
    Acta Physiol Scand; 1990 Mar; 138(3):395-401. PubMed ID: 2327265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beneficial influence of ketanserin on autoregulation of blood flow in post-ischemic kidneys.
    Verbeke M; Smöllich B; van de Voorde J; de Ridder L; Lameire N
    J Am Soc Nephrol; 1996 Apr; 7(4):621-7. PubMed ID: 8724897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purinoceptors in the kidney.
    Guan Z; Osmond DA; Inscho EW
    Exp Biol Med (Maywood); 2007 Jun; 232(6):715-26. PubMed ID: 17526763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tubuloglomerular feedback and blood flow autoregulation during DA1-induced renal vasodilation.
    Pollock DM; Arendshorst WJ
    Am J Physiol; 1990 Mar; 258(3 Pt 2):F627-35. PubMed ID: 1969238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.