These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32301943)

  • 21. Facile synthesis of IrO
    Liu X; Wang X; Han Q; Qi C; Wang C; Yang R
    Talanta; 2019 Oct; 203():227-234. PubMed ID: 31202330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanozyme-Inhibited SERS Multichannel Paper-Based Sensor Array for the Quantification and Identification of Biothiols and Cancer Cells Based on Three Ag-Based Nanomaterials.
    Wang L; Chen Y; Ji Y; Wang L; Liu X; Wang F; Li C
    Anal Chem; 2024 Jul; 96(28):11353-11365. PubMed ID: 38970480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-invasive detection of glucose in human urine using a color-generating copper NanoZyme.
    Naveen Prasad S; Weerathunge P; Karim MN; Anderson S; Hashmi S; Mariathomas PD; Bansal V; Ramanathan R
    Anal Bioanal Chem; 2021 Feb; 413(5):1279-1291. PubMed ID: 33399880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A colorimetric sensor for rapid discrimination of tea polyphenols and tea authentication based on Rh-decorated Pd nanocubes with high peroxidase-like activity.
    Duan J; Xia S; Sang X; Chen Y; Wei H; Nie J; Xu G; Yuan Y; Niu W
    Talanta; 2024 Aug; 276():126209. PubMed ID: 38728802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Label-free gold nanorods sensor array for colorimetric detection and discrimination of biothiols in human urine samples.
    Yuan D; Liu JJ; Yan HH; Li CM; Huang CZ; Wang J
    Talanta; 2019 Oct; 203():220-226. PubMed ID: 31202329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold nanozyme as an excellent co-catalyst for enhancing the performance of a colorimetric and photothermal bioassay.
    An P; Xue X; Rao H; Wang J; Gao M; Wang H; Luo M; Liu X; Xue Z; Lu X
    Anal Chim Acta; 2020 Aug; 1125():114-127. PubMed ID: 32674757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme.
    Das R; Dhiman A; Kapil A; Bansal V; Sharma TK
    Anal Bioanal Chem; 2019 Feb; 411(6):1229-1238. PubMed ID: 30637436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles.
    Li ZJ; Zheng XJ; Zhang L; Liang RP; Li ZM; Qiu JD
    Biosens Bioelectron; 2015 Jun; 68():668-674. PubMed ID: 25660511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols.
    Sun L; Yan Y; Chen S; Zhou Z; Tao W; Li C; Feng Y; Wang F
    Anal Bioanal Chem; 2022 Feb; 414(5):1857-1865. PubMed ID: 35028690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols.
    Chang HC; Chang YF; Fan NC; Ho JA
    ACS Appl Mater Interfaces; 2014; 6(21):18824-31. PubMed ID: 25323388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides.
    Zhu Y; Wu J; Han L; Wang X; Li W; Guo H; Wei H
    Anal Chem; 2020 Jun; 92(11):7444-7452. PubMed ID: 32363854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing signal-on sensors by regulating nanozyme activity.
    Chang Y; Gao S; Liu M; Liu J
    Anal Methods; 2020 Oct; 12(39):4708-4723. PubMed ID: 32990706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulated enzyme inhibition-based strategy for ultrasensitive colorimetric biothiol detection based on nanoperoxidases.
    Yu R; Wang R; He X; Liu T; Shen J; Dai Z
    Chem Commun (Camb); 2019 Sep; 55(77):11543-11546. PubMed ID: 31490483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon.
    Bhagat S; Srikanth Vallabani NV; Shutthanandan V; Bowden M; Karakoti AS; Singh S
    J Colloid Interface Sci; 2018 Mar; 513():831-842. PubMed ID: 29223890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrimination of cysteamine from mercapto amino acids through isoelectric point-mediated surface ligand exchange of β-cyclodextrin-modified gold nanoparticles.
    Ma Q; Fang X; Zhang J; Zhu L; Rao X; Lu Q; Sun Z; Yu H; Zhang Q
    J Mater Chem B; 2020 May; 8(18):4039-4045. PubMed ID: 32373881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Dual-Readout Method for Biothiols Detection Based on the NSET of Nitrogen-Doped Carbon Quantum Dots-Au Nanoparticles System.
    Fu X; Gu D; Zhao S; Zhou N; Zhang H
    J Fluoresc; 2017 Sep; 27(5):1597-1605. PubMed ID: 28401410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanozyme-based electrochemical biosensors for disease biomarker detection.
    Mahmudunnabi RG; Farhana FZ; Kashaninejad N; Firoz SH; Shim YB; Shiddiky MJA
    Analyst; 2020 Jul; 145(13):4398-4420. PubMed ID: 32436931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Etching and anti-etching strategy for sensitive colorimetric sensing of H
    Hou W; Liu X; Lu Q; Liu M; Zhang Y; Yao S
    Colloids Surf B Biointerfaces; 2018 Feb; 162():118-125. PubMed ID: 29190462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanozyme: Biosensing and therapeutic activities.
    Sharifi M; Hosseinali SH; Yousefvand P; Salihi A; Shekha MS; Aziz FM; JouyaTalaei A; Hasan A; Falahati M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110422. PubMed ID: 31924012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles.
    Mohammadi S; Khayatian G
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():27-34. PubMed ID: 28531847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.