These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 32301987)
1. Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost. Xue Y; Jonassen I; Øvreås L; Taş N FEMS Microbiol Ecol; 2020 May; 96(5):. PubMed ID: 32301987 [TBL] [Abstract][Full Text] [Related]
2. Genomic insights into redox-driven microbial processes for carbon decomposition in thawing Arctic soils and permafrost. Li Y; Xue Y; Roy Chowdhury T; Graham DE; Tringe SG; Jansson JK; Taş N mSphere; 2024 Jul; 9(7):e0025924. PubMed ID: 38860762 [TBL] [Abstract][Full Text] [Related]
3. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Müller O; Bang-Andreasen T; White RA; Elberling B; Taş N; Kneafsey T; Jansson JK; Øvreås L Environ Microbiol; 2018 Dec; 20(12):4328-4342. PubMed ID: 29971895 [TBL] [Abstract][Full Text] [Related]
4. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. Wu X; Chauhan A; Layton AC; Lau Vetter MCY; Stackhouse BT; Williams DE; Whyte L; Pfiffner SM; Onstott TC; Vishnivetskaya TA Environ Sci Technol; 2021 Sep; 55(18):12683-12693. PubMed ID: 34472853 [TBL] [Abstract][Full Text] [Related]
5. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. Yergeau E; Hogues H; Whyte LG; Greer CW ISME J; 2010 Sep; 4(9):1206-14. PubMed ID: 20393573 [TBL] [Abstract][Full Text] [Related]
6. Effect of Long-Term Farming Practices on Agricultural Soil Microbiome Members Represented by Metagenomically Assembled Genomes (MAGs) and Their Predicted Plant-Beneficial Genes. Nelkner J; Henke C; Lin TW; Pätzold W; Hassa J; Jaenicke S; Grosch R; Pühler A; Sczyrba A; Schlüter A Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31163637 [TBL] [Abstract][Full Text] [Related]
7. Eight Metagenome-Assembled Genomes Provide Evidence for Microbial Adaptation in 20,000- to 1,000,000-Year-Old Siberian Permafrost. Sipes K; Almatari A; Eddie A; Williams D; Spirina E; Rivkina E; Liang R; Onstott TC; Vishnivetskaya TA; Lloyd KG Appl Environ Microbiol; 2021 Sep; 87(19):e0097221. PubMed ID: 34288700 [TBL] [Abstract][Full Text] [Related]
8. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Mackelprang R; Waldrop MP; DeAngelis KM; David MM; Chavarria KL; Blazewicz SJ; Rubin EM; Jansson JK Nature; 2011 Nov; 480(7377):368-71. PubMed ID: 22056985 [TBL] [Abstract][Full Text] [Related]
9. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. Sannino C; Qi W; Rüthi J; Stierli B; Frey B Environ Microbiome; 2023 Jun; 18(1):54. PubMed ID: 37328770 [TBL] [Abstract][Full Text] [Related]
10. Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Perez-Mon C; Qi W; Vikram S; Frossard A; Makhalanyane T; Cowan D; Frey B Microb Genom; 2021 Apr; 7(4):. PubMed ID: 33848236 [TBL] [Abstract][Full Text] [Related]
11. Permafrost Active Layer Microbes From Ny Ålesund, Svalbard (79°N) Show Autotrophic and Heterotrophic Metabolisms With Diverse Carbon-Degrading Enzymes. Sipes K; Paul R; Fine A; Li P; Liang R; Boike J; Onstott TC; Vishnivetskaya TA; Schaeffer S; Lloyd KG Front Microbiol; 2021; 12():757812. PubMed ID: 35185810 [TBL] [Abstract][Full Text] [Related]
12. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Goordial J; Davila A; Greer CW; Cannam R; DiRuggiero J; McKay CP; Whyte LG Environ Microbiol; 2017 Feb; 19(2):443-458. PubMed ID: 27129741 [TBL] [Abstract][Full Text] [Related]
13. Distinct Taxonomic and Functional Profiles of the Microbiome Associated With Different Soil Horizons of a Moist Tussock Tundra in Alaska. Tripathi BM; Kim HM; Jung JY; Nam S; Ju HT; Kim M; Lee YK Front Microbiol; 2019; 10():1442. PubMed ID: 31316487 [TBL] [Abstract][Full Text] [Related]
17. Bacterial and Archaeal Metagenome-Assembled Genome Sequences from Svalbard Permafrost. Xue Y; Jonassen I; Øvreås L; Taş N Microbiol Resour Announc; 2019 Jul; 8(27):. PubMed ID: 31270193 [TBL] [Abstract][Full Text] [Related]
18. Microbial Community Structure and Metabolic Potential at the Initial Stage of Soil Development of the Glacial Forefields in Svalbard. Tian C; Lv Y; Yang Z; Zhang R; Zhu Z; Ma H; Li J; Zhang Y Microb Ecol; 2023 Aug; 86(2):933-946. PubMed ID: 36239777 [TBL] [Abstract][Full Text] [Related]
19. Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Kang L; Song Y; Mackelprang R; Zhang D; Qin S; Chen L; Wu L; Peng Y; Yang Y Nat Commun; 2024 Jul; 15(1):5920. PubMed ID: 39004662 [TBL] [Abstract][Full Text] [Related]
20. Total nitrogen influence bacterial community structure of active layer permafrost across summer and winter seasons in Ny-Ålesund, Svalbard. Loganathachetti DS; Venkatachalam S; Jabir T; Vipindas PV; Krishnan KP World J Microbiol Biotechnol; 2022 Jan; 38(2):28. PubMed ID: 34989908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]