These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Changes in the Active, Dead, and Dormant Microbial Community Structure across a Pleistocene Permafrost Chronosequence. Burkert A; Douglas TA; Waldrop MP; Mackelprang R Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683748 [TBL] [Abstract][Full Text] [Related]
24. Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration. Monteux S; Weedon JT; Blume-Werry G; Gavazov K; Jassey VEJ; Johansson M; Keuper F; Olid C; Dorrepaal E ISME J; 2018 Sep; 12(9):2129-2141. PubMed ID: 29875436 [TBL] [Abstract][Full Text] [Related]
25. Depth-specific distribution of bacterial MAGs in permafrost active layer in Ny Ålesund, Svalbard (79°N). Sipes K; Buongiorno J; Steen AD; Abramov AA; Abuah C; Peters SL; Gianonne RJ; Hettich RL; Boike J; Garcia SL; Vishnivetskaya TA; Lloyd KG Syst Appl Microbiol; 2024 Nov; 47(6):126544. PubMed ID: 39303414 [TBL] [Abstract][Full Text] [Related]
26. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Coolen MJ; van de Giessen J; Zhu EY; Wuchter C Environ Microbiol; 2011 Aug; 13(8):2299-314. PubMed ID: 21554513 [TBL] [Abstract][Full Text] [Related]
27. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. Kim HM; Lee MJ; Jung JY; Hwang CY; Kim M; Ro HM; Chun J; Lee YK J Microbiol; 2016 Nov; 54(11):713-723. PubMed ID: 27796925 [TBL] [Abstract][Full Text] [Related]
28. Limited sensitivity of permafrost soils to heavy rainfall across Svalbard ecosystems. Magnússon RÍ; Schuuring S; Hamm A; Verhoeven MA; Limpens J; Loonen MJEE; Lang SI Sci Total Environ; 2024 Sep; 943():173696. PubMed ID: 38848905 [TBL] [Abstract][Full Text] [Related]
29. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. Taş N; Prestat E; McFarland JW; Wickland KP; Knight R; Berhe AA; Jorgenson T; Waldrop MP; Jansson JK ISME J; 2014 Sep; 8(9):1904-19. PubMed ID: 24722629 [TBL] [Abstract][Full Text] [Related]
30. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. Schostag M; Priemé A; Jacquiod S; Russel J; Ekelund F; Jacobsen CS ISME J; 2019 May; 13(5):1345-1359. PubMed ID: 30692629 [TBL] [Abstract][Full Text] [Related]
31. Microbial Community Changes in 26,500-Year-Old Thawing Permafrost. Scheel M; Zervas A; Jacobsen CS; Christensen TR Front Microbiol; 2022; 13():787146. PubMed ID: 35401488 [TBL] [Abstract][Full Text] [Related]
32. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Hultman J; Waldrop MP; Mackelprang R; David MM; McFarland J; Blazewicz SJ; Harden J; Turetsky MR; McGuire AD; Shah MB; VerBerkmoes NC; Lee LH; Mavrommatis K; Jansson JK Nature; 2015 May; 521(7551):208-12. PubMed ID: 25739499 [TBL] [Abstract][Full Text] [Related]
33. Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra. Romanowicz KJ; Kling GW Environ Microbiol; 2022 Dec; 24(12):6220-6237. PubMed ID: 36135820 [TBL] [Abstract][Full Text] [Related]
34. Permafrost thaw with warming reduces microbial metabolic capacities in subsurface soils. Wu L; Yang F; Feng J; Tao X; Qi Q; Wang C; Schuur EAG; Bracho R; Huang Y; Cole JR; Tiedje JM; Zhou J Mol Ecol; 2022 Mar; 31(5):1403-1415. PubMed ID: 34878672 [TBL] [Abstract][Full Text] [Related]
35. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China. Song C; Wang X; Miao Y; Wang J; Mao R; Song Y Sci Total Environ; 2014 Jul; 487():604-10. PubMed ID: 24135025 [TBL] [Abstract][Full Text] [Related]
36. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Martinez MA; Woodcroft BJ; Ignacio Espinoza JC; Zayed AA; Singleton CM; Boyd JA; Li YF; Purvine S; Maughan H; Hodgkins SB; Anderson D; Sederholm M; Temperton B; Bolduc B; Saleska SR; Tyson GW; Rich VI; ; Saleska SR; Tyson GW; Rich VI Syst Appl Microbiol; 2019 Jan; 42(1):54-66. PubMed ID: 30616913 [TBL] [Abstract][Full Text] [Related]
37. Metagenome assembled-genomes reveal similar functional profiles of CPR/Patescibacteria phyla in soils. Nascimento Lemos L; Manoharan L; William Mendes L; Monteiro Venturini A; Satler Pylro V; Tsai SM Environ Microbiol Rep; 2020 Dec; 12(6):651-655. PubMed ID: 32815317 [TBL] [Abstract][Full Text] [Related]
38. Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost. Liang R; Li Z; Lau Vetter MCY; Vishnivetskaya TA; Zanina OG; Lloyd KG; Pfiffner SM; Rivkina EM; Wang W; Wiggins J; Miller J; Hettich RL; Onstott TC Microbiome; 2021 May; 9(1):110. PubMed ID: 34001281 [TBL] [Abstract][Full Text] [Related]
39. Vertical distribution of bacterial community diversity in the Greater Khingan Mountain permafrost region. Li X; Cui Y; Ma D; Song D; Liu L Ecol Evol; 2022 Jul; 12(7):e9106. PubMed ID: 35845356 [TBL] [Abstract][Full Text] [Related]
40. Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils. Feng J; Penton CR; He Z; Van Nostrand JD; Yuan MM; Wu L; Wang C; Qin Y; Shi ZJ; Guo X; Schuur EAG; Luo Y; Bracho R; Konstantinidis KT; Cole JR; Tiedje JM; Yang Y; Zhou J mBio; 2019 Feb; 10(1):. PubMed ID: 30808694 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]