These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32302060)

  • 1. The cytoskeleton as a modulator of tension driven axon elongation.
    Sousa SC; Sousa MM
    Dev Neurobiol; 2021 Apr; 81(3):300-309. PubMed ID: 32302060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubules, actin and cytolinkers: how to connect cytoskeletons in the neuronal growth cone.
    Pinto-Costa R; Sousa MM
    Neurosci Lett; 2021 Mar; 747():135693. PubMed ID: 33529653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common mechanisms underlying growth cone guidance and axon branching.
    Kalil K; Szebenyi G; Dent EW
    J Neurobiol; 2000 Aug; 44(2):145-58. PubMed ID: 10934318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic linker proteins regulate neuronal polarization through microtubule and growth cone dynamics.
    Neukirchen D; Bradke F
    J Neurosci; 2011 Jan; 31(4):1528-38. PubMed ID: 21273437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and elongation within and along the axon.
    Lamoureux P; Heidemann SR; Martzke NR; Miller KE
    Dev Neurobiol; 2010 Feb; 70(3):135-49. PubMed ID: 19950193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal polarization: the cytoskeleton leads the way.
    Stiess M; Bradke F
    Dev Neurobiol; 2011 Jun; 71(6):430-44. PubMed ID: 21557499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth.
    Grabham PW; Seale GE; Bennecib M; Goldberg DJ; Vallee RB
    J Neurosci; 2007 May; 27(21):5823-34. PubMed ID: 17522326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration.
    Hur EM; Saijilafu ; Zhou FQ
    Trends Neurosci; 2012 Mar; 35(3):164-74. PubMed ID: 22154154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the Axon as an Active Partner with the Growth Cone in Axonal Elongation.
    de Rooij R; Kuhl E; Miller KE
    Biophys J; 2018 Nov; 115(9):1783-1795. PubMed ID: 30309611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoskeleton in nerve growth cone motility and axonal pathfinding.
    Letourneau PC
    Perspect Dev Neurobiol; 1996; 4(2-3):111-23. PubMed ID: 9168194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding?
    Gasperini RJ; Pavez M; Thompson AC; Mitchell CB; Hardy H; Young KM; Chilton JK; Foa L
    Mol Cell Neurosci; 2017 Oct; 84():29-35. PubMed ID: 28765051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stretch-induced axon growth: a universal, yet poorly explored process].
    Breau MA; Schneider-Maunoury S
    Biol Aujourdhui; 2017; 211(3):215-222. PubMed ID: 29412131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli.
    Purro SA; Ciani L; Hoyos-Flight M; Stamatakou E; Siomou E; Salinas PC
    J Neurosci; 2008 Aug; 28(34):8644-54. PubMed ID: 18716223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton.
    Dent EW; Barnes AM; Tang F; Kalil K
    J Neurosci; 2004 Mar; 24(12):3002-12. PubMed ID: 15044539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila growth cones advance by forward translocation of the neuronal cytoskeletal meshwork in vivo.
    Roossien DH; Lamoureux P; Van Vactor D; Miller KE
    PLoS One; 2013; 8(11):e80136. PubMed ID: 24244629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Actin disruption alters the localization of tau in the growth cones of cerebellar granule neurons.
    Zmuda JF; Rivas RJ
    J Cell Sci; 2000 Aug; 113 ( Pt 15)():2797-809. PubMed ID: 10893194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10.
    Suh LH; Oster SF; Soehrman SS; Grenningloh G; Sretavan DW
    J Neurosci; 2004 Feb; 24(8):1976-86. PubMed ID: 14985440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane and cytoskeleton dynamics during axonal elongation and stabilization.
    Ledesma MD; Dotti CG
    Int Rev Cytol; 2003; 227():183-219. PubMed ID: 14518552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation.
    Tan M; Cha C; Ye Y; Zhang J; Li S; Wu F; Gong S; Guo G
    Neural Plast; 2015; 2015():947423. PubMed ID: 26064693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.