These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 32302150)
1. A High-Rate Lithium Manganese Oxide-Hydrogen Battery. Zhu Z; Wang M; Meng Y; Lin Z; Cui Y; Chen W Nano Lett; 2020 May; 20(5):3278-3283. PubMed ID: 32302150 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Nickel-hydrogen batteries for large-scale energy storage. Chen W; Jin Y; Zhao J; Liu N; Cui Y Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11694-11699. PubMed ID: 30373834 [TBL] [Abstract][Full Text] [Related]
4. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage. Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827 [TBL] [Abstract][Full Text] [Related]
5. Ultralow-Temperature Aqueous Conductive Polymer-Hydrogen Gas Battery. Peng Q; Zhu Z; Jiang T; Liu Z; Meng Y; Liu S; Yuan Y; Zhang K; Xie Z; Zheng X; Xu J; Chen W ACS Appl Mater Interfaces; 2023 Jan; 15(1):1021-1028. PubMed ID: 36542843 [TBL] [Abstract][Full Text] [Related]
6. A High-Energy Aqueous Manganese-Metal Hydride Hybrid Battery. Yang M; Chen R; Shen Y; Zhao X; Shen X Adv Mater; 2020 Sep; 32(38):e2001106. PubMed ID: 32803841 [TBL] [Abstract][Full Text] [Related]
7. Secondary batteries with multivalent ions for energy storage. Xu C; Chen Y; Shi S; Li J; Kang F; Su D Sci Rep; 2015 Sep; 5():14120. PubMed ID: 26365600 [TBL] [Abstract][Full Text] [Related]
8. Low-cost and high safe manganese-based aqueous battery for grid energy storage and conversion. Huang J; Guo Z; Dong X; Bin D; Wang Y; Xia Y Sci Bull (Beijing); 2019 Dec; 64(23):1780-1787. PubMed ID: 36659537 [TBL] [Abstract][Full Text] [Related]
9. An Ultrafast and Ultra-Low-Temperature Hydrogen Gas-Proton Battery. Zhu Z; Wang W; Yin Y; Meng Y; Liu Z; Jiang T; Peng Q; Sun J; Chen W J Am Chem Soc; 2021 Dec; 143(48):20302-20308. PubMed ID: 34806375 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte. Zhang N; Dong Y; Wang Y; Wang Y; Li J; Xu J; Liu Y; Jiao L; Cheng F ACS Appl Mater Interfaces; 2019 Sep; 11(36):32978-32986. PubMed ID: 31418545 [TBL] [Abstract][Full Text] [Related]
11. An All-Climate Nonaqueous Hydrogen Gas-Proton Battery. Zhang K; Liu Z; Khan NA; Ma Y; Xie Z; Xu J; Jiang T; Liu H; Zhu Z; Liu S; Wang W; Meng Y; Peng Q; Zheng X; Wang M; Chen W Nano Lett; 2024 Feb; 24(5):1729-1737. PubMed ID: 38289279 [TBL] [Abstract][Full Text] [Related]
12. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. Braga MH; M Subramaniyam C; Murchison AJ; Goodenough JB J Am Chem Soc; 2018 May; 140(20):6343-6352. PubMed ID: 29688709 [TBL] [Abstract][Full Text] [Related]
13. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
14. Rechargeable Hydrogen-Chlorine Battery Operates in a Wide Temperature Range. Xie Z; Zhu Z; Liu Z; Sajid M; Chen N; Wang M; Meng Y; Peng Q; Liu S; Wang W; Jiang T; Zhang K; Chen W J Am Chem Soc; 2023 Nov; 145(46):25422-25430. PubMed ID: 37877747 [TBL] [Abstract][Full Text] [Related]
15. Rechargeable Batteries for Grid Scale Energy Storage. Zhu Z; Jiang T; Ali M; Meng Y; Jin Y; Cui Y; Chen W Chem Rev; 2022 Nov; 122(22):16610-16751. PubMed ID: 36150378 [TBL] [Abstract][Full Text] [Related]
16. High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO Wang Y; Yang SZ; You Y; Feng Z; Zhu W; Gariépy V; Xia J; Commarieu B; Darwiche A; Guerfi A; Zaghib K ACS Appl Mater Interfaces; 2018 Feb; 10(8):7061-7068. PubMed ID: 29400442 [TBL] [Abstract][Full Text] [Related]
17. Highly Reversible Lithium-Metal Anode and Lithium-Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. Chen J; Yang H; Zhang X; Lei J; Zhang H; Yuan H; Yang J; Nuli Y; Wang J ACS Appl Mater Interfaces; 2019 Sep; 11(36):33419-33427. PubMed ID: 31423761 [TBL] [Abstract][Full Text] [Related]
18. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy. Li N; Wang Y; Tang D; Zhou H Angew Chem Int Ed Engl; 2015 Aug; 54(32):9271-4. PubMed ID: 26096640 [TBL] [Abstract][Full Text] [Related]
19. A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode. Benítez A; Di Lecce D; Elia GA; Caballero Á; Morales J; Hassoun J ChemSusChem; 2018 May; 11(9):1512-1520. PubMed ID: 29493106 [TBL] [Abstract][Full Text] [Related]
20. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]