These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32302150)

  • 61. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach.
    Nowak S; Winter M
    Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis and Electrochemical Performance of KVO/GO Composites as Anodes for Aqueous Rechargeable Lithium-Ion Batteries.
    Duan W; Li Y; Zhao Y; Zhang H; Liu J; Zhao Y; Miao Z
    ACS Omega; 2022 Oct; 7(40):35552-35561. PubMed ID: 36249365
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.
    Xie X; Wang S; Kretschmer K; Wang G
    J Colloid Interface Sci; 2017 Aug; 499():17-32. PubMed ID: 28363101
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte.
    Su S; Huang Z; NuLi Y; Tuerxun F; Yang J; Wang J
    Chem Commun (Camb); 2015 Feb; 51(13):2641-4. PubMed ID: 25571942
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanomaterials for lithium-ion rechargeable batteries.
    Liu HK; Wang GX; Guo Z; Wang J; Konstantinov K
    J Nanosci Nanotechnol; 2006 Jan; 6(1):1-15. PubMed ID: 16573064
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery.
    Wu C; Gu S; Zhang Q; Bai Y; Li M; Yuan Y; Wang H; Liu X; Yuan Y; Zhu N; Wu F; Li H; Gu L; Lu J
    Nat Commun; 2019 Jan; 10(1):73. PubMed ID: 30622264
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System.
    Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Full open-framework batteries for stationary energy storage.
    Pasta M; Wessells CD; Liu N; Nelson J; McDowell MT; Huggins RA; Toney MF; Cui Y
    Nat Commun; 2014; 5():3007. PubMed ID: 24389854
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries.
    Ghazi ZA; Sun Z; Sun C; Qi F; An B; Li F; Cheng HM
    Small; 2019 Aug; 15(32):e1900687. PubMed ID: 30972975
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.
    Yoo HD; Liang Y; Li Y; Yao Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7001-7. PubMed ID: 25799037
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions.
    Niu C; Pan H; Xu W; Xiao J; Zhang JG; Luo L; Wang C; Mei D; Meng J; Wang X; Liu Z; Mai L; Liu J
    Nat Nanotechnol; 2019 Jun; 14(6):594-601. PubMed ID: 31036907
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Deep-Cycle Aqueous Zinc-Ion Battery Containing an Oxygen-Deficient Vanadium Oxide Cathode.
    Liao M; Wang J; Ye L; Sun H; Wen Y; Wang C; Sun X; Wang B; Peng H
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2273-2278. PubMed ID: 31743581
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries.
    Zhong H; Wang C; Xu Z; Ding F; Liu X
    Sci Rep; 2016 May; 6():25484. PubMed ID: 27146645
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes.
    Wu S; Qiao Y; Yang S; Ishida M; He P; Zhou H
    Nat Commun; 2017 Jun; 8():15607. PubMed ID: 28585527
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Data-Driven Cycle Life Prediction of Lithium Metal-Based Rechargeable Battery Based on Discharge/Charge Capacity and Relaxation Features.
    Si Q; Matsuda S; Yamaji Y; Momma T; Tateyama Y
    Adv Sci (Weinh); 2024 Sep; 11(33):e2402608. PubMed ID: 38934905
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems.
    Ahmed M; Yazdi AZ; Mitha A; Chen P
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30348-30356. PubMed ID: 30091585
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 79. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries.
    Jung KN; Hwang SM; Park MS; Kim KJ; Kim JG; Dou SX; Kim JH; Lee JW
    Sci Rep; 2015 Jan; 5():7665. PubMed ID: 25563733
    [TBL] [Abstract][Full Text] [Related]  

  • 80. LiVP2O7/C: A New Insertion Anode Material for High-Rate Lithium-Ion Battery Applications.
    Mani V; Kalaiselvi N
    Inorg Chem; 2016 Apr; 55(8):3807-14. PubMed ID: 27065103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.